THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Подключение кнопки к линии порта ввода/вывода

Изучив данный материал, в котором все очень детально и подробно описано с большим количеством примеров, вы сможете легко овладеть и программировать порты ввода/вывода микроконтроллеров AVR.

  • Часть 2. Подключение светодиода к линии порта ввода/вывода
  • Часть 3. Подключение транзистора к линии порта ввода/вывода
Пример будем рассматривать на микроконтроллере ATMega8 .

Программу писать будем в Atmel Studio 6.0 .

Эмулировать схему будем в Proteus 7 Professional .

Самой распространенной задачей при создании проектов для микроконтроллеров является подключение кнопок. Несмотря на простоту, эта задача имеет существенные, возможно и неочевидные особенности.
Если подключить один из контактов кнопки, например, к общему проводу («земле»), а второй к выбранной линии порта ввода/вывода микроконтроллера, который переключен в режим «Вход», то выяснится, что такой метод не работает. При нажатии кнопки линия порта микроконтроллера соединяется с землей, и программа будет считывать лог.«0» с этой линии порта ввода/вывода, но при отпущенной кнопке вывод микроконтроллера не будет соединен ни с чем, что часто и называют «висит в воздухе». В таком случае программа будет считать с вывода и лог.«0» и лог.«1» случайным образом, так как на не к чему не присоединённую линию порта ввода/вывода будут наводится наводки.
Правильное подключение предполагает, что в разомкнутом состоянии вывод микроконтроллера должен быть соединен через резистор, например с шиной питания, а в замкнутом - с землей, либо наоборот. Сопротивление резистора не должно быть слишком маленьким, чтобы ток, текущий через него при замкнутых контактах кнопки не был слишком большим. Обычно используют значения порядка 10-100 кОм.

Рис: Подключения кнопки с подтянутой шиной питания.

- при отжатой кнопке равно лог.«1»;
- при нажатой кнопке равно лог.«0»;

Рис: Подключения кнопки с подтянутой землей.
При таком подключении состояние линии порта ввода вывода будет:
- при отжатой кнопке равно лог.«0»;
- при нажатой кнопке равно лог.«1»;

- подключения к линии порта ввода/вывода кнопки с подтянутой шиной питания:

#include // Основная программа int main(void) { // Настраиваем порты ввода/вывода DDRB = 0b11111111; //Настраиваем все разряды порта B на режим "Выход" PORTB = 0b00000000; //Устанавливаем все разряды порта B в лог.«0» (На выходе порта напряжение равное GND) DDRD = 0b00000000; //Настраиваем все разряды порта D на режим "Вход" PORTD = 0b11111111; //Устанавливаем все разряды порта D в лог.«1» (На выходе порта напряжение равное Vcc) // Вечный цикл while (1) { //Проверяем: если состояние PD0 лог.«0» то кнопка нажата if ((PIND&(1 << PD0)) == 0) { //Состояние PB0 устанавливаем в лог.«1» PORTB |= (1 << PB0); } else { //Состояние PB0 устанавливаем в лог.«0» PORTB &= ~(1 << PB0); } } }

- подключения к линии порта ввода/вывода кнопки с подтянутой землей:

// Подключаем внешние библиотеки #include #include // Основная программа int main(void) { // Настраиваем порты ввода/вывода DDRB = 0b11111111; //Настраиваем все разряды порта B на режим "Выход" PORTB = 0b00000000; //Устанавливаем все разряды порта B в лог.«0» (На выходе порта напряжение равное GND) DDRD = 0b00000000; //Настраиваем все разряды порта D на режим "Вход" PORTD = 0b11111111; //Устанавливаем все разряды порта D в лог.«1» (На выходе порта напряжение равное Vcc) // Вечный цикл while (1) { //Проверяем: если состояние PD0 лог.«1» то кнопка нажата if ((PIND&(1 << PD0)) == 1) { //Состояние PB0 устанавливаем в лог.«1» PORTB |= (1 << PB0); } else { //Состояние PB0 устанавливаем в лог.«0» PORTB &= ~(1 << PB0); } } }

Существует два основных типа микроконтроллеров AVR. Первый из них предназначен для получения максимального быстродействия при высокой частоте, второй - для экономичной работы на небольших тактовых частотах. Маркировка микросхем второго типа отличается от первого тем, что на конце добавляется буква "L". Например, и , и .

Микроконтроллеры первой группы допускают питание в диапазоне от 4,5 до 5,5 вольт при тактовой частоте 0...16 МГц (для некоторых моделей - до 20 МГц, например или ), вторые - соответственно 2,7...5,5 вольт при частоте 0...8 МГц (для большинства моделей, у некоторых моделей диапазон может быть уже). Ток потребления у них также различается: микроконтроллеры с индексом "L" потребляют меньше электроэнергии.

Существуют также микроконтроллеры с возможностью понижения питания до 1.8 В, которые обычно маркируются буквой "V", например . При понижении питания соответствующим образом должна быть снижена и тактовая частота. Для ATtiny2313V при питании 1,8...5,5 В частота должна находиться в интервале 0...4 МГц, при питании 2,7...5,5 В - в интервале 0...10 МГц.

Такой подход может быть применим для экспериментального макетирования и любительских самоделок, но в промышленной автоматике может приводить к сбоям при помехах по питанию. В условиях сильных внешних помех сопротивление этого резистора (100-500 кОм) оказывается слишком большим, и при отсутствии на линии RESET сигнала высокого уровня может происходить случайный сброс микроконтроллера.

Существует несколько способов снижения риска непреднамеренного сброса. Один из самых простых - это подключить к линии RESET внешний подтягивающий резистор с рекомендуемым значением сопротивления от 4,7 до 10 кОм.

Для дополнительной защиты линии RESET от внешних помех рекомендуется также шунтировать ее на землю с помощью внешнего конденсатора емкостью около 0,1 мкф. Но при этом необходимо помнить, что вход внешнего сброса RESET может использоваться однопроводным интерфейсом debugWIRE при отладке программного обеспечения микроконтроллера. Наличие конденсатора, подключенного параллельно входу RESET, будет приводить к сбоям в работе этого интерфейса. Поэтому, если планируется отлаживать микроконтроллер на целевой плате с помощью debugWIRE, необходимо предусмотреть перемычку, чтобы отключать этот конденсатор на время отладки прикладного программного обеспечения.


Для поддержки режима высоковольтного программирования микроконтроллеры AVR не имеют стандартного внутреннего диода для защиты от избыточного напряжения на входе RESET. Поэтому, если высоковольтное программирование не используется, для защиты от помех рекомендуется подключать внешний диод, например 1N4148 между линией RESET и шиной питания микроконтроллера. Таким образом, типовая схема внешней "обвязки" для линии RESET будет выглядеть следующим образом.

Если же линия сброса не используется и внутрисхемное программирование не требуется, то в законченном устройстве вывод RESET может быть присоединен непосредственно к шине питания микроконтроллера.

Дополнительной мерой может служить шунтирование каждого контакта электродвигателя на его корпус или на "землю".

Емкость керамических конденсаторов С2 и С3 в этом случае также может лежать в диапазоне 0,01...0,1 мкф


При установке микроконтроллера в непосредственной близости от двигателей следует позаботиться о снижении риска возможных наводок на внешние цепи AVR. Так, цепь внешнего тактирования может служить транзитным путем для наводок. Чтобы устранить возможные сбои, рекомендуется конденсаторы С1 и С2 устанавливать как можно ближе к выводам XT1 и XT2, а их "земляные" обкладки подключать непосредственно к выводу GND микроконтроллера короткими проводниками. Кроме того, рекомендуется корпус кварцевого резонатора Q1 припаивать коротким проводом к цепи GND. Еще большую безопасность может обеспечить экранирующий контур на печатной плате вокруг кварцевого резонатора и конденсаторов.

Мы провели эмуляцию схемы в программе Proteus, помигали светодиодом и научились прошивать наш виртуальный микроконтроллер. Наверняка многим из читателей пришла в голову мысль: “А можно ли помигать светодиодом, использую кнопку, подключенную к МК?

Да, разумеется, это возможно. Реализуется довольно легко. Причем можно сэмулировать кнопку как с фиксацией так и без фиксации. Причем в программе Proteus применить оба типа кнопок можно с помощью одного и того же одинакового макроса кнопки. В каких случаях это может быть полезно? Например, нам требуется осуществить выбор режимов работы устройства. Давайте разберем подробнее, как это реализовать с помощью микроконтроллера, и проведем эмуляцию в программе Proteus.


Для того, чтобы иметь наглядное представление, что у нас действительно выбор из двух режимов, мы соберем простенькую схемку на 4 светодиодах с управлением одной кнопкой. При первом варианте у нас поочередно загораются с первого по четвертый светодиоды. При втором варианте то же самое, но в обратной последовательнос ти, то есть с четвертого по первый. Единственное, что хочу уточнить, кнопка у нас опрашивается на нажатие или отжатие только перед началом эффекта. До тех пор, пока эффект не закончит свою работу, программа не реагирует на нажатие или отжатие кнопки.

Итак к делу. Так выглядит у нас наша схема в программе Proteus (кликните для увеличения):

В этой схеме мы уже видим отличия от той, которую собирали еще в прошлой статье. В левой части схемы мы видим обозначения кнопки и источника питания +5 вольт.

Как мы уже разобрали, питание и землю мы берем во вкладке “Терминал”. Обозначаются они у нас соответственно Power и Ground.

Обозначается у нас питание схемы треугольником с чертой, делящей его по высоте. Рядом, на рисунке, изображено обозначение кнопки. Справа от кнопки мы видим закрашенный красный круг с двухнаправленной стрелочкой. Если во время эмуляции нажать на него, то кнопка у нас зафиксируется и будет постоянно нажата. После повторного нажатия на него фиксация снимается.


Перед использованием нам нужно выбрать кнопку в библиотеке аналогично остальным деталям. Для этого нужно набрать в поле “Маска” слово “but”. Затем в поле “Результаты” слово “BUTTON”:


После этого кнопка появиться у нас в списке, вместе с выбранными деталями, применяемыми в проекте.

Какие порты у нас используются в проекте. Ниже на рисунке мы видим отходящие линии от портов РA0, РВ0, РВ1, РВ2 и РВ3. К порту В у нас подключены светодиоды, а к порту А – кнопка.

Итак, при нажатии, мы замыкаем цепь соединяющую +5 вольт с портом РА0 и верхним выводом резистора. Для чего у нас здесь вообще установлен резистор? Дело в том, что цепь кнопки должна быть замкнутой. После того как мы установили резистор, ток у нас течет от плюса питания через кнопку, резистор и дальше на землю.

Номинал резистора достаточно взять равным 200 Ом. Итак, когда мы нажимаем кнопку, мы соединяем порт РА0 с +5 вольт питания, и если мы опросим ножку РА0 на наличие напряжения или его отсутствие, мы сможем влиять на выполнение нашей программы.

Скрины с текстом нашей программы я привел ниже:


Итак отличия от прошлого проекта заключаются в том, что все 8 выводов порта РА мы конфигурируем на вход, выводы порта РВ0 – РВ3 мы конфигурируем на выход, а РВ4 – РВ7 на вход.


Затем мы используем в нашей программе проверку условия “ if”


Итак, мы видим в строчке после “if”, в скобках, условие выполнения. Код ниже выполняется, если на порту PA0 у нас присутствует логический ноль, или ноль вольт. Этот текст в скобках – сдвиг бита порта. Мы разберем в одной из следующих статей, а пока достаточно принять на веру, что этим мы опрашиваем кнопку на отжатие . Затем в фигурных скобках идет текст программы, который выполняется, если условие верно. Если условие не верно, программа продолжает выполняться дальше, пропустив текст в фигурных скобках.

Аналогично, с помощью условия “if” мы опрашиваем кнопку на нажатие . Обратите внимание, текст у нас в скобках изменился. Это означает что если на ножке РА0 у нас логическая единица, мы выполняем условие, то есть текст в фигурных скобках. То есть другими словами, у нас при отжатой кнопке, поочередно загораются и тухнут светодиоды с первого по четвертый, а при нажатии и удерживании, загораются и тухнут с четвертого по первый. Таким образом, мы можем влиять на выполнение программы, с помощью нажатия кнопки, опрашивая наличие на ней логического нуля, или логической единицы

Также , в котором находятся файл “сишник”, HEX и файл Протеуса.

А вот и видео

Описан простой эксперимент с подключением кнопки к AVR микроконтроллеру, разобрана не сложная программа на языке Си для обработки нажатий кнопки. Разберемся с особенностями подключения кнопки к портам МК, а также с методами считывания состояний кнопки на языке Си.

В предыдущих статьях были рассмотрены эксперименты со светодиодами, которые подключались к портам микроконтроллера, сконфигурированных на вывод (Output).

В этой статье мы подключим к микроконтроллеру кнопку, контакты которой при нажатии замыкаются, а при отжатии - размыкаются (замыкающая кнопка).

Принципиальная схема эксперимента

Для того чтобы можно было хоть как-то наблюдать и управлять чем-то с помощью кнопки мы подключим к микроконтроллеру еще два светодиода. Схемка очень простая, вот она:

Рис. 1. Принципиальная схема эксперимента с микроконтроллером ATtiny2313 и кнопкой.

Как видим, к двум портам PB0 и PB1 через ограничивающие резисторы подключены два светодиода, а к порту PD2 - кнопка и она также с ограничивающим резистором. Для подключения программатора к МК используется разъем Conn 1 (AVR-ISP), а для подключения схемы к отдельному источнику питания +5В предназначены два контакта - P1 и P2.

Рис. 2. Собранная на беспаечной макетной панели схема эксперимента с микроконтроллером и кнопкой.

Важно заметить что для безопасного использования порта с кнопкой, последовательно ей подключен резистор с сопротивлением на 1 КОм (можно подключить и на другое сопротивление 600 Ом - 2 КОм). Примите это как правило хорошего тона в работе с пинами, которое обережет порт МК от выхода из строя в случае ошибочной подачи на пин высокого уровня и при замкнутой кнопке.

Структура портов ввода-вывода в AVR микроконтроллерах

Пины микроконтроллера являются универсальными GPIO (General Purpose Input Output), к ним можно подключать как исполнительные устройства (индикаторы, силовые ключи), так и разнообразные цифровые датчики (кнопки, переключатели).

Несколько пинов в МК могут быть подключены к АЦП/ЦАП (Аналогово-Цифровой-Преобразователь и наоборот), с их помощью можно выполнять анализ и генерацию аналоговых сигналов. Обычные GPIO не умеют работать с аналоговыми сигналами, у них на входе/выходе может быть только 0 (0В) или 1 (+5В).

К каждому пину GPIO внутри микроконтроллера подключены несколько блоков и электронных компонентов, о которых полезно знать:

  • Между пином порта и каждой из шин питания (GND и VCC) подключено по диоду . Они используются для "гашения" кратковременных помех, скачков напряжения относительно пина и каждой из шин питания;
  • Также между пином и GND включен конденсатор . Точно не знаю зачем он нужен, возможно для защиты от помех, для предотвращения дребезга контактов при использовании кнопок и переключателей подключенных к пину, или еще для чего-то;
  • К каждому пину подключен электронный ключ с резистором - это подтяжка пина к напряжению источника питания (Pull-UP) . Данный электронный ключ включается программно и служит для установки по умолчанию высокого логического уровня 1 (+5В) при работе с пином в режиме ввода (Input);
  • Между пином и каждой из шин питания (GND и VCC) включены еще два электронных ключа (без резисторов), они нужны для установки на пине высокого (+5В) или низкого (0В) логического уровня при работе пина в режиме вывода (Output).

Для программного управления и конфигурирования каждого из портов применяются три специальных регистра, к примеру для порта "B":

  • DDRB - регистр (8 бит) для установки режимов работы пинов - на ввод или вывод. Осуществляется установкой соответствующих бит в регистре;
  • PORTB - регистр для управление состоянием пинов порта в режиме вывода - высокий или низкий уровень. Также используется в режиме ввода, применяется для включения подтягивающих резисторов (Pull-UP) и установки высокого уровня на входе по умолчанию;
  • PINB - регистр, который содержит логические состояния пинов в порте, используется для чтения значений портов, которые сконфигурированы в режиме ввода.

Более детально узнать об устройстве портов для конкретной модели микроконтроллера можно из его даташита, в разделе "I/O-Ports", также там могут быть приведены примеры кода на Си и Ассемблере для работы с портами.

Пин RESET в качестве порта ввода-вывода

Полезно знать что пин "RESET" микросхемы (у нас на схеме это пин под номером 1), который предназначен для сброса выполнения программы микроконтроллера (перезагрузки), также можно использовать для подключения кнопок, светодиодов и других устройств ввода-вывода, то есть он может быть превращен в обычный GPIO.

Это может быть полезно если у микросхемы не хватает пинов для вашей конструкции. Например при сборке какого-то устройства на чипе ATtiny13 (8 выводов, 2шт - питание, 5шт - порты ввода-вывода, 1шт -для RESET) у вас оказалось что не хватает одного пина для светодиода. Здесь может быть несколько вариантов решения проблемы:

  1. Перепрограммирование пина с RESET под порт ввода-вывода;
  2. Подключение светодиода к одному из соседних уже использованных пинов, применив некоторые хистросты в схемном решении и с учетом возможности его общего использования;
  3. Использование другого МК у которого больше пинов, например ATtiny2313.

Что из этих вариантов проще и дешевле по финансам/времени - судите по своему случаю.

Для превращения пина "RESET" в порт ввода-вывода придется изменить специальный фьюз - RSTDISBL (Reset Disable). Но прежде чем это сделать нужно помнить что после данной операции перепрограммировать микроконтроллер станет возможным только с применением высоковольтного программатора (на 12В), обычный USB ISP или другой программатор с питанием от 5В сделать свою работу уже не сможет.

Программа на Си

Итак, у нас есть одна кнопка и два светодиода которые подключены к микроконтроллеру, что же с ними можно сделать? - а сделаем мы вот что (алгоритм):

  1. После включения питания светодиоды будут мигать попеременно и с задержкой в 300 миллисекунд;
  2. При нажатии и удержании кнопки будет светиться только синий светодиод;
  3. После отжатия кнопки синий светодиод мигнет 3 раза с задержкой 500 миллисекунд, после чего светодиоды снова будут мигать поочередно и с задержкой 300 миллисекунд.

Пример реализации такого алгоритма на языке Си под AVR приведен ниже. Создадим новый файл для нашей программы и откроем его для редактирования:

Nano /tmp/avr-switch-test.c

Поместим следующий код в тело файла:

/* Эксперимент с кнопкой на ATtiny2313 * https://сайт */ #define F_CPU 1000000UL // Частота ядра = 1 МГц #include #include // -- Макросы для управления светодиодами -- #define LED_BLUE_ON PORTB |= (1 << PB0) // Засвечиваем синий диод #define LED_BLUE_OFF PORTB &= ~(1 << PB0) // Гасим синий диод #define LED_RED_ON PORTB |= (1 << PB1) // Засвечиваем красный диод #define LED_RED_OFF PORTB &= ~(1 << PB1) // Гасим красный диод // Основная программа void main(void) { DDRD |= (0 << PD2); // Пин 6 - на вход PORTD |= (1 << PD2); // Включаем подтягивающий (Pull-UP) резистор для пина 6 DDRB |= (1 << PB0); // Пин 12 - на вывод DDRB |= (1 << PB1); // пин 13 - на вывод // -- Бесконечный цикл -- while(1) { _delay_ms(300); // Задержка 300 мс LED_BLUE_ON; // Включаем синий диод LED_RED_OFF; // Гасим красный диод _delay_ms(300); LED_RED_ON; // Включаем красный диод LED_BLUE_OFF; // Гасим синий диод if(!(PIND & (1 << PD2))) { // Проверяем нажата ли кнопка _delay_ms(50); // Задержка 50 мс (дребезг контактов) LED_RED_OFF; LED_BLUE_ON; while(!(PIND & (1 << PD2))); // Ждем пока кнопка не будет отпущена _delay_ms(500); // Дальше мигаем синим диодом LED_BLUE_OFF; _delay_ms(500); LED_BLUE_ON; _delay_ms(500); LED_BLUE_OFF; _delay_ms(500); LED_BLUE_ON; _delay_ms(500); LED_BLUE_OFF; _delay_ms(200); } // Конец блока работы с кнопкой } // Конец блока с вечным циклом }

Первым делом мы задаем константу F_CPU , которая укажет компилятору рабочую частоту ядра микроконтроллера, это нужно чтобы некоторые подпрограммы и функции работали корректно. В нашем примере используется функция задержки по времени - "_delay_ms" из библиотеки "util/delay.h", которая просчитывает время затраченное на холостые такты, опираясь на значение в константе F_CPU.

Посмотреть код библиотеки "delay" для организации задержки по времени и в котором используется константа F_CPU, можно в GNU Linux при помощи любого текстового редактора, к примеру можно выполнить вот такую команду:

Nano /usr/lib/avr/include/util/delay.h

Заводская установленная частота внутреннего RC генератора в микроконтроллере ATtiny2313 равняется 8000000Гц (8МГц), также по умолчанию установлен фьюз деления частоты - CKDIV8 (Clock Divide by 8), поэтому реальная рабочая частота кристалла = 8000000Гц / 8 = 1000000Гц = 1МГц.

Посмотреть какие фьюзы установлены в микроконтроллере можно при помощи avrdude или же графической оболочке к нему под названием AVR8 Burn-O-Mat .

Дальше в программе определены макросы для управления состоянием портов к которым подключены светодиоды: LED_BLUE_ON, LED_BLUE_OFF, LED_RED_ON, LED_RED_OFF. Вызвав подобный макрос в любом месте программы мы очень просто можем зажечь или погасить каждый из светодиодов, не придется повторять его код, что в свою очередь упростит программу и сделает ее более наглядной.

В основной программе "void main(void)" мы начинаем работу с конфигурации портов:

  • DDRD |= (0 << PD2) - установка разряда PD2 регистра DDRD на ввод, к нему подключена кнопка (пин 6);
  • PORTD |= (1 << PD2) - включение подтягивающего резистора для пина к которому привязан разряд PD2 регистра PORTD (пин 6);
  • DDRB |= (1 << PB0) - установка разряда PB0 в регистре DDRB на вывод, к нему подключен СИНИЙ светодиод (пин 12);
  • DDRB |= (1 << PB1) - установка разряда PB1 в регистре DDRB на вывод, к нему подключен КРАСНЫЙ светодиод (пин 13).

Дальше, используя макросы, мы гасим красный светодиод и зажигаем синий. Теперь при помощи еще одного вечного цикла но у же с условием мы выполним ожидание до того момента, пока кнопка не будет отжата: "while(!(PIND & (1 << PD2)));".

При отжатой кнопке на пине 6 появится высокий уровень (это сделает внутренний подтягивающий резистор, который мы включили раньше), а в разряде PD2 регистра PIND будет установлена логическая 1.

После этого выполняется трехразовое мигание (включение-выключение) синего светодиода с задержкой в 0,5 секунды и основной вечный цикл начинает работу по новому - будут поочередно зажигаться два светодиода.

Очень простая программа, но тем не менее, она является хорошим примером и почвой для дальнейших экспериментов.

Настройка Geany под ATtiny2313

В предыдущих публикациях я проводил эксперименты с микроконтроллером ATMega8, здесь же используется менее "нафаршированный" МК - ATTiny2313.

Для компиляции программы и прошивки ее в МК следует немножко перенастроить команды для сборки в интегрированной среде программирования Geany.

Идем в меню Build - Set Build Commands. В команде для компиляции (C commands) нужно изменить модель применяемого чипа: "-mmcu=attiny2313". В команде для прошивки МК нужно изменить тип чипа для avrdude: "-p t2313".

Рис. 3. Перенастройка Geany для работы с микроконтроллером ATTiny2313.

Все команды приведены для ОС GNU Linux, если у вас Windows то возможно придется прописать полные пути к бинарным файлам "avr-gcc.exe", "avr-objcopy.exe", "avrdude.exe".

Более подробно о том как настроить Geany в GNU Linux я рассматривал в одной из предыдущих статей цикла.

Компиляция и прошивка программы в МК

Компиляцию, сборку и прошивку программы можно выполнить нажав в среде Geany поочередно три кнопки: "Compile", "Build" и "Run". Также все эти операции можно выполнить из консоли, вот команды для данных действий (выполнять последовательно):

Avr-gcc -mmcu=attiny2313 -Os /tmp/avr-switch-test.c -o /tmp/avr-switch-test.o avr-objcopy -j .text -j .data -O ihex /tmp/avr-switch-test.o /tmp/avr-switch-test.hex avrdude -c usbasp -p t2313 -P usb -U flash:w:/tmp/avr-switch-test.hex

Все команды почти полностью (за исключением подстановок имен файлов) идентичны тем, которые мы исправляли в настройках Geany.

Заключение

Несмотря на простоту эксперимента я также постарался осветить некоторые очень важные технические моменты работы с портами, приведенные знания и опыт будут полезны в дальнейшем изучении и работе с микроконтроллерами ATMEL.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама