THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Обмен веществ — важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом . Метаболизм состоит из реакций ассимиляции (пластического обмена, анаболизма) и реакций диссимиляции (энергетического обмена, катаболизма). Ассимиляция — совокупность реакций биосинтеза, протекающих в клетке, диссимиляция — совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. Эти группы реакций взаимосвязаны: реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, реакции диссимиляции не идут без ферментов, образующихся в реакциях пластического обмена.

По типу обмена веществ организмы подразделяются на две группы: автотрофы и гетеротрофы. Автотрофы — организмы, способные синтезировать органические вещества из неорганических и использующие для этого синтеза или солнечную энергию, или энергию, выделяющуюся при окислении неорганических веществ. Гетеротрофы — организмы, использующие для своей жизнедеятельности органические вещества, синтезированные другими организмами. В качестве источника углерода автотрофы используют неорганические вещества (СО 2), а гетеротрофы — экзогенные органические. Источники энергии: у автотрофов — энергия солнечного света (фотоавтотрофы ) или энергия, выделяющаяся при окислении неорганических соединений (хемоавтотрофы ), у гетеротрофов — энергия окисления органических веществ (хемогетеротрофы ).

Большинство живых организмов относится или к фотоавтотрофам (растения), или к хемогетеротрофам (грибы, животные). Если организмы, в зависимости от условий, ведут себя как авто- либо как гетеротрофы, то их называют миксотрофами (эвглена зеленая).

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется геном . Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.

Генетический код и его свойства

Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.

Свойства генетического кода:

  1. триплетность: каждая аминокислота кодируется сочетанием из трех нуклеотидов (триплетом, кодоном);
  2. однозначность (специфичность): триплет соответствует только одной аминокислоте;
  3. вырожденность (избыточность): аминокислоты могут кодироваться несколькими (до шести) кодонами;
  4. универсальность: система кодирования аминокислот одинакова у всех организмов Земли;
  5. неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов;
  6. из 64 кодовых триплетов 61 — кодирующие, кодируют аминокислоты, а 3 — бессмысленные (в РНК — УАА, УГА, УАГ), не кодируют аминокислоты. Они называются кодонами-терминаторами , поскольку блокируют синтез полипептида во время трансляции. Кроме того, есть кодон-инициатор (в РНК — АУГ), с которого трансляция начинается.

Таблица генетического кода

Первое
основание
Второе основание Третье
основание
У(А) Ц(Г) А(Т) Г(Ц)
У(А) Фен
Фен
Лей
Лей
Сер
Сер
Сер
Сер
Тир
Тир

Цис
Цис

Три
У(А)
Ц(Г)
А(Т)
Г(Ц)
Ц(Г) Лей
Лей
Лей
Лей
Про
Про
Про
Про
Гис
Гис
Глн
Глн
Арг
Арг
Арг
Арг
У(А)
Ц(Г)
А(Т)
Г(Ц)
А(Т) Иле
Иле
Иле
Мет
Тре
Тре
Тре
Тре
Асн
Асн
Лиз
Лиз
Сер
Сер
Арг
Арг
У(А)
Ц(Г)
А(Т)
Г(Ц)
Г(Ц) Вал
Вал
Вал
Вал
Ала
Ала
Ала
Ала
Асп
Асп
Глу
Глу
Гли
Гли
Гли
Гли
У(А)
Ц(Г)
А(Т)
Г(Ц)

* Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

Реакции матричного синтеза

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одной хромосомы может содержать несколько тысяч генов, которые располагаются в линейном порядке. Место гена в определенном участке хромосомы называется локусом . Особенностями строения гена эукариот являются: 1) наличие достаточно большого количества регуляторных блоков, 2) мозаичность (чередование кодирующих участков с некодирующими). Экзоны (Э) — участки гена, несущие информацию о строении полипептида. Интроны (И) — участки гена, не несущие информацию о строении полипептида. Число экзонов и интронов различных генов разное; экзоны чередуются с интронами, общая длина последних может превышать длину экзонов в два и более раз. Перед первым экзоном и после последнего экзона находятся нуклеотидные последовательности, называемые соответственно лидерной (ЛП) и трейлерной последовательностью (ТП). Лидерная и трейлерная последовательности, экзоны и интроны образуют единицу транскрипции. Промотор (П) — участок гена, к которому присоединяется фермент РНК-полимераза, представляет собой особое сочетание нуклеотидов. Перед единицей транскрипции, после нее, иногда в интронах находятся регуляторные элементы (РЭ), к которым относятся энхансеры и сайленсеры . Энхансеры ускоряют транскрипцию, сайленсеры тормозят ее.

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.

РНК-полимераза может присоединиться только к промотору, который находится на 3"-конце матричной цепи ДНК, и двигаться только от 3"- к 5"-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).

В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5"-конца, 2) полиаденилирование 3"-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост».

Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию.

Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

Трансляция

Трансляция — синтез полипептидной цепи на матрице иРНК.

Органоиды, обеспечивающие трансляцию, — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70S-рибосомы), в свободном виде в цитоплазме (80S-рибосомы) и на мембранах эндоплазматической сети (80S-рибосомы). Таким образом, синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы. Малая субъединица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.

В малой субъединице рибосомы расположен функциональный центр (ФЦР) с двумя участками — пептидильным (Р-участок) и аминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три — в пептидильном и три — в аминоацильном участках.

Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК (лекция №4). Длина тРНК от 75 до 95 нуклеотидных остатков. Они имеют третичную структуру, по форме напоминающую лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. В антикодоновой петле РНК имеется антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3"-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединять именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.

Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне тРНК не всегда важен), поэтому в клетке обнаружено всего около 40 различных тРНК.

Синтез белка начинается с того момента, когда к 5"-концу иРНК присоединяется малая субъединица рибосомы, в Р-участок которой заходит метиониновая тРНК (транспортирующая аминокислоту метионин). Следует отметить, что любая полипептидная цепь на N-конце сначала имеет метионин, который в дальнейшем чаще всего отщепляется. Синтез полипептида идет от N-конца к С-концу, то есть пептидная связь образуется между карбоксильной группой первой и аминогруппой второй аминокислот.

Затем происходит присоединение большой субъединицы рибосомы, и в А-участок поступает вторая тРНК, чей антикодон комплементарно спаривается с кодоном иРНК, находящимся в А-участке.

Пептидилтрансферазный центр большой субъединицы катализирует образование пептидной связи между метионином и второй аминокислотой. Отдельного фермента, катализирующего образование пептидных связей, не существует. Энергия для образования пептидной связи поставляется за счет гидролиза ГТФ.

Как только образовалась пептидная связь, метиониновая тРНК отсоединяется от метионина, а рибосома передвигается на следующий кодовый триплет иРНК, который оказывается в А-участке рибосомы, а метиониновая тРНК выталкивается в цитоплазму. На один цикл расходуется 2 молекулы ГТФ. В А-участок заходит третья тРНК, и образуется пептидная связь между второй и третьей аминокислотами.

Трансляция идет до тех пор, пока в А-участок не попадает кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения. Полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.

Скорость передвижения рибосомы по иРНК — 5-6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут. Первым белком, синтезированным искусственно, был инсулин, состоящий из 51 аминокислотного остатка. Потребовалось провести 5000 операций, в работе в течение трех лет принимали участие 10 человек.

В трансляции можно выделить три стадии: а) инициации (образование иницаторного комплекса), б) элонгации (непосредственно «конвейер», соединение аминокислот друг с другом), в) терминации (образование терминирующего комплекса).

«Механизмы» сборки полинуклеотидных и полипептидных цепочек у прокариот и эукариот не различаются. Но в связи с тем, что гены прокариот не имеют экзонов и интронов (исключение — гены архебактерий), располагаются группами, и на эту группу генов приходится один промотор, появляются следующие особенности транскрипции и трансляции у прокариот.

  1. В результате транскрипции образуется полицистронная иРНК, кодирующая несколько белков, совместно обеспечивающих определенную группу реакций.
  2. иРНК имеет несколько центров инициации трансляции, терминации трансляции и НТО.
  3. Не происходят КЭПирование, полиаденилирование и сплайсинг иРНК.
  4. Трансляция начинается еще до завершения транскрипции; эти процессы не разделены во времени и пространстве, как это имеет место у эукариот.

1 — ДНК; 2 — РНК-полимераза; 3 — Нуклеозидтрифосфаты ГТФ, ЦТФ, АТФ, УТФ.

Можно добавить, что срок «жизни» прокариотических иРНК — несколько минут (у эукариот — часы и даже сутки).

    Перейти к лекции №9 « Строение прокариотической клетки. Вирусы»

    Перейти к лекции №11 « Понятие об обмене веществ. Биосинтез белков»

Как ни странно, синтезировать белок искусственно иногда бывает проще, чем установить его структуру. Пусть структура белка известна. Как же получить его в колбе?
Зададимся целью синтезировать искусственно один из самых простых белков — инсулин. Как мы уже говорили, молекула инсулина состоит из двух цепей А и В. Очевидно, нужно получить отдельно обе цепи, а затем соединить их. Итак, синтез цепи В молекулы инсулина. Будем проводить его с С-конца цепи. Первая аминокислота — аланин. В первую очередь возьмем основу, к которой будем постепенно, кислоту за кислотой, приращивать инсулиновую цепь. В качестве такой основы можно брать ионообменные смолы, полистирол. Прикрепим к основе через карбоксильную группу первую аминокислоту — аланин.
Итак, аланин карбоксильной группой зацепился за смолу, но аминогруппа у него свободна. Теперь к этой аминогруппе надо прикрепить через карбоксильную группу следующую аминокислоту — лизин. Как это сделать? Хороший способ получения амидной связи между карбоксилом и аминогруппой — ацилирсвание последней хлорангидридом кислоты. При этом выделяется хлористый водород.
Так и поступим. Возьмем хлорангидрид лизина ц подействуем им на... Стоп! Ничего хорошего не получится. Дело в том, что в самом лизине есть аминогруппа, и не понятно, почему хлорангидрид лизина должен взаимодействовать лишь с аминогруппой первой аминокислоты (аланина), а не даст полиамид лизина.
Как же быть? Чтобы выйти из положения, нужно защитить аминогруппу лизина от действия хлор-ангидридов. Для этого ее ацилируют ангидридом трифторуксусной кислоты. Почему именно трифтор-уксусной, а не просто уксусной, почему аминогруппу нельзя просто проацетилировать, т. е. защитить группой СОСНо? Оказывается, ацетильная группа «держится» за аминогруппу прочно, а наша цель — посадить ее «на время». Трифторацетил же потом легко будет «снять», не разрушая образовавшегося пептида.
Значит, следующая стадия заключается в ацили-ровании по аминогруппе «привязанного» к смоле аланина хлорангидридом трифторацетилированного (тоже по аминогруппе) лизина. В случае лизина дело осложняется еще присутствием второй аминогруппы, но ее можно защитить какой-то группой X, которая не отщепляется с нее во время синтеза и удаляется только в самом конце.
В результате мы получаем дипептид с защищенной аминогруппой. Теперь аминогруппу надо освободить. Защиту снимаем, действуя слабым раствором щелочи, и получаем свободную аминогруппу, способную принять следующую аминокислоту — пролин.
Очередная стадия теперь уже понятна читателю — действуем на пептид хлорангидридом трифторацетилированного пролина. Потом снимаем защитную группу, действуем хлорангидридом трифторацетилированного треонина, и так далее, пока не построим всю цепь из 30-ти аминокислот. Присоединяем последнюю кислоту — фенилаланин, снимаем защитную группу и, действуя кислотой, отсоединяем готовую цепь от смолы.
Таким же образом синтезируем вторую цепь, соединяем обе цепи, и искусственный инсулин готов! Не так просто и не так быстро, не правда ли? Да, работа требует терпения и времени.
Тем не менее в 1968 г. Мэрифилду удалось синтезировать сравнительно сложный белок — фермент рибонуклеазу. Он состоит из 124 аминокислот. Этот синтез включал 11931 стадию (подобных тем, что мы только что разобрали), он был проведен всего за три недели.

Каждая клетка содержит тысячи белков. Свойства белков определяются их первичной структурой , т.е. последовательностью аминокислот в их молекулах.

В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. Эта информация получила название генетической , а участок ДНК, в котором содержится информация о первичной структуре одного белка, называется ген .

Ген - это участок ДНК, в котором содержится информация о первичной структуре одного белка.

Ген - это единица наследственной информации организма.

Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип .

Биосинтез белка

Биосинтез белка - это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.

Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.

Биосинтез происходит в клетках с огромной скоростью. В организме высших животных в одну минуту образуется до \(60\) тыс. пептидных связей.

Транскрипция

Транскрипция - это процесс снятия информации с молекулы ДНК синтезируемой на ней молекулой иРНК (мРНК).

Носителем генетической информации является ДНК, расположенная в клеточном ядре.

В ходе транскрипции участок двуцепочечной ДНК «разматывается», а затем на одной из цепочек синтезируется молекула иРНК.

Информационная (матричная) РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности.

Формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включен урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК».

Как и в любой другой биохимической реакции в этом синтезе участвует фермент - РНК-полимераза .

Так как в одной молекуле ДНК может находиться множество генов, очень важно, чтобы РНК-полимераза начала синтез иРНК со строго определенного места ДНК. Поэтому в начале каждого гена находится особая специфическая последовательность нуклеотидов, называемая промотором . РНК-полимераза «узнаёт» промотор, взаимодействует с ним и, таким образом, начинает синтез цепочки иРНК с нужного места.

Фермент продолжает синтезировать иРНК до тех пор, пока не дойдет до очередного «знака препинания» в молекуле ДНК - терминатора (это последовательность нуклеотидов, указывающая на то, что синтез иРНК нужно прекратить).

У прокариот синтезированные молекулы иРНК сразу же могут взаимодействовать с рибосомами и участвовать в синтезе белков.

У эукариот иРНК синтезируется в ядре, поэтому сначала она взаимодействует со специальными ядерными белками и переносится через ядерную мембрану в цитоплазму.

Трансляция

Трансляция - это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

В цитоплазме клетки обязательно должен иметься полный набор аминокислот, необходимых для синтеза белков. Эти аминокислоты образуются в результате расщепления белков, получаемых организмом с пищей, а некоторые могут синтезироваться в самом организме.

Обрати внимание!

Аминокислоты доставляются к рибосомам транспортными РНК (тРНК ). Любая аминокислота может попасть в рибосому только прикрепившись к специальной тРНК).

На тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно \(0,2\) секунды.

За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК, отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота включается в растущую цепочку.

Аминокислоты, доставленные на рибосомы, ориентированы по отношению друг к другу так, что карбоксильная группа одной молекулы оказывается рядом с аминогруппой другой молекулы. В результате между ними образуется пептидная связь.

Рибосома постепенно сдвигается по иРНК, задерживаясь на следующих триплетах. Так постепенно формируется молекула полипептида (белка).

Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.

Так как клетке необходимо много молекул каждого белка, то как только рибосома, первой начавшая синтез белка на иРНК, продвинется вперед, за ней на ту же иРНК, нанизывается вторая рибосома. Затем на иРНК последовательно нанизываются следующие рибосомы.

Все рибосомы, синтезирующие один и тот же белок, закодированный в данной иРНК, образуют полисому . Именно на полисомах и происходит одновременный синтез нескольких одинаковых молекул белка.

Когда синтез данного белка окончен, рибосома может найти другую иРНК и начать синтезировать другой белок.

Общая схема синтеза белка представлена на рисунке.


    2.Кровь содержит белок.При нагревании или обработке белка начинается процесс денатурации.Разрушается белковая основа гемоглобина, и на одежде остаются пятна окиси железа, по сути - ржавчина, которую тяжело отстирать.

    Ответить Удалить
  1. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    10. Первым белком,который был синтезирован искусственно, был - инсулин, а также соевый белок.

    Ответить Удалить
  2. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    9.Трипсин, Пепсин.

    Ответить Удалить
  3. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.
    3.Именно сера — поставщик кератина, из которых строятся волосяные чешуйки. При дефиците серы волосы становятся тусклыми и безжизненными, теряют свою упругость.

    Ответить Удалить
  4. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    6. Для растущего организма необходимы белки, а содержание белков больше в мясном супе.

    Ответить Удалить
  5. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    2) Кровь содержит белок, который сворачивается при температуре выше 42 градусов

    Ответить Удалить
  6. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    6. В мясном супе есть белок, он нужен для того чтобы росла мышечная масса.

    Ответить Удалить
  7. Белки – нерегулярные полимеры, мономерами которых являются аминокислоты. В состав природных белков входят 20 аминокислот, 8 из них незаменимые, т.е. не синтезируются в организме и их поступление в организм обязательно вместе с пищей.
    Белки, взаимодействуя с азотной кислотой, дают жёлтое окрашивание. Данная реакция называется ксантопротеиновой реакцией.Первичная структура белков – это чередование аминокислот в линейной структуре. Денатурация – процесс изменения структуры белковой молекулы. Содержание белка в яйце больше, чем в молоке и молочных продуктах. При варке белок меняет свой цвет.

    7.Молоко может свернуться из-за процесса скисания. В составе любого молока есть специальные молочнокислые бактерии. Если молоко охлаждено, то они находятся в своего рода спящем состоянии. Когда продукт оказывается в температуре, приближенной к комнатной, то бактерии начинают активно размножаться. В результате этого процесса молоко изменяет свои свойства - консистенцию и вкус. Причиной скисания обычно становится неправильное хранение. Причем в этом не всегда виноват потребитель - если на заводе или в магазине молоко долго оставалось при неподходящей температуре, оно может скиснуть очень быстро.

06.02.2004, Пт, 09:02, Мск

Ученые из Медицинского института Ховарда Хьюза при университете Вашингтона (Univeristy of Washington’s Howard Hughes Medical Institute) сконструировали первый в истории искусственный белок, который никогда не существовал в природе. Top7 стал первым синтетическим протеином, созданным «с нуля» на компьютере и только затем полученным в лаборатории. В реальности форма молекулы в точности соответствует модели в компьютерной программе. Сейчас разворачивается новый этап работ по проекту Folding@Home — программе распределенных вычислений, работающей через интернет.

Folding@Home предназначен для расчета математической модели «правильного» сворачивания белка в трехмерную структуру и сулит новые перспективы для продления активной жизни человека.

Предполагается, что использованная методика будет использована при конструировании других белков, столь необходимых для медицины человека.

Эта разработка группы биологов под руководством Дэвида Бэйкера (David Baker) проливает свет на загадку фолдинга белков.



Источник: Gautam Dantas/University of Washington
Напомним, что ученым до сих пор непонятны принципы, в соответствии с которыми белки сворачиваются в трехмерном пространстве, принимая особую форму (это явление и получило название «фолдинг белков»).

Успешный эксперимент по конструированию синтетического протеина Top7 проливает определенный свет на механизм фолдинга белков.

Теперь, по словам Дэвида Бэйкера, стали понятны хотя бы некоторые характеристики таинственного процесса .

В настоящее время ученые из университета Вашингтона (Univeristy of Washington’s Howard Hughes Medical Institute) продолжают работу.

Исследовательская группа поставила своей целью сконструировать протеины с точно запрограммированными функциями.

Ожидается, что это будет настоящий прорыв — и не только в медицине.

Что такое фолдинг

В клетках за производство протеинов отвечают рибосомы, где белки собираются из отдельных аминокислот в соответствии с последовательностью, считываемой из ДНК.

Результатом работы такого биологического конвейера являются длинные молекулы — «заготовки» для протеинов. И хотя геном сегодня расшифрован, то есть, известна структура некоторого количества белков, в том числе — человека, даже в этом случае невозможно судить о его функциях. Последние проявляются только после того, как длинная цепочка аминокислот свернется и примет необходимую форму.

Примечательно, что из миллионов потенциально возможных пространственных комбинаций протеин принимает одну-единственную заранее известную форму. Этот процесс и называется фолдингом. Таким образом, в организме образуются готовые к работе гемоглобин, инсулин и другие необходимые для жизнедеятельности белки.

Процесс сворачивания может проходить в несколько стадий длительностью от нескольких секунд до нескольких минут. В последней — решающей — фазе протеин из «предварительного состояния» мгновенно принимает окончательную форму. Именно эта фаза продолжительностью несколько десятков микросекунд представляет собой сложнейшую проблему для моделирования.

Ситуация с принятием окончательной формы усугубляется тем, что процесс в значительной степени зависит от условий внешней среды, в том числе температуры. Одна молекула мгновенно, «естественным образом», сворачивается в природных условиях. Но моделирование этого, казалось бы, простого процесса может занимать годы непрерывной работы многих компьютеров.

В наше время ученые развернули активную деятельность в попытках понять, каким образом протеины выполняют фолдинг так быстро и так надежно.

Понимание этого процесса позволит не только с легкостью создавать усовершенствованные версии белков, существующих в природе, но и моделировать абсолютно новые структуры с новыми свойствами — синтетические «самосборные» протеины с запрограммированной функциональностью. Некоторые даже говорят о будущих «нанороботах», появление которых приведет к настоящей технологической революции, в том числе в медицине.

Фолдинг@на дому.EXE

Первый синтетический протеин создан учеными из Медицинского института Ховарда Хьюза при университете Вашингтона. Именно этот институт является главным спонсором известного проекта Folding@Home — программы распределенных вычислений для расчета фолдинга разнообразных синтетических белков.

Так получилось, что одной из задач, моделирование которой требует огромной вычислительной мощности, является фолдинг протеинов. На современном ПК расчет 1 наносекуды фолдинга белка при определенных температурных условиях занимает примерно 1 день. Для расчета всего процесса требуется в десятки тысяч раз больше вычислительной мощности, потому что фолдинг продолжается несколько десятков микросекунд. Кроме того, необходимо моделировать сворачиваемость разных модификаций молекулы при разных температурах. Для выполнения этой задачи любой вычислительной мощности будет недостаточно.

Folding@Home — один из самых крупных научных проектов распределенных вычислений. На сайте можно скачать программу-клиент, которая работает под Windows, Linux или Macintosh в фоновом режиме или в виде красивого скринсейвера (см. слева). Кстати, работа программы в фоновом режиме с низким приоритетом практически не сказывается на общей производительности системы.

Сейчас в проекте Folding@Home участвуют уже более 270 тыс. пользователей со всех регионов мира. Работает более 570 тыс. компьютеров, их количество постоянно растет. Недавно к числу спонсоров присоединилась компания Google. Она внедрила фоновый обсчет фолдинга в свою популярную надстройку Google Toolbar для браузера Internet Explorer.

На первой стадии развития Folding@Home с октября 2000 г. по октябрь 2001 г. были успешно смоделированы несколько простых, быстро сворачивающихся протеинов, в том числе виллин (количество аминокислот — 36, время фолдинга — 10 микросекунд). Ученые на практике, в результате лабораторных экспериментов, подтвердили корректность полученных результатов.

Хотя виллин (см. рисунок справа) стал «визитной карточкой» проекта, в настоящее время рассчитывается фолдинг более сложных и больших молекул. Так, скоро начнется обсчет протеина Alzheimer Amyloid Beta, который вызывает токсический эффект в болезни Альцгеймера.

Неправильный фолдинг и болезнь Альцгеймера

Сейчас специалисты знают о фолдинге гораздо больше, чем Паулиг и Анфинсен, которые получили Нобелевскую премию за открытие этого процесса полвека назад.

Известно, что протеиновая цепочка иногда может сворачиваться в неправильную форму. Кроме того, были открыты специальные протеины, получившие название чапероны, единственное предназначение которых — помогать другим протеинам сворачиваться и следить за тем, чтобы процесс проходил в соответствии с «инструкцией».

Для корректного фолдинга одной молекулы белка иногда требуется последовательное участие пяти различных чаперонов. Без них процесс может выйти из-под контроля. В этом случае цепочка из аминокислот может присоединиться к другой цепочке с образованием мусора.

Простейший пример нарушения фолдинга знаком каждому человеку, который варил яйцо. В процессе нагревания молекулы протеинов внутри яйца теряют свою форму. После этого они уже не могут свернуться правильным образом и образуют твердую, нефункциональную, но вкусную массу (такое нарушение изображено на рисунке справа).

Примерно то же самое происходит с одним из протеинов в организме человека, пораженного болезнью Альцгеймера . Нефункциональная белковая масса, образовавшаяся в результате неправильного фолдинга одного-единственного протеина, откладывается в определенных участках мозга и мешает его работе.

Безусловно, получение синтетических протеинов будет способствовать созданию новых, эффективных лекарств от болезни Альцгеймера и других недугов, многие из которых свойственны именно пожилым людям. Таким образом, можно ожидать, что человечество сделает новый шаг на пути к увеличению продолжительности человеческой жизни. Предполагается, что в самом ближайшем будущем люди смогут сохранять хорошее здоровье до 80-100 лет, и это уже совсем не фантастика.

/ сайт

1 Статья с описанием работы ученых опубликована 21 ноября 2003 г. в журнале Science.

2 Программа Folding@Home — лишь один из многочисленных проектов распределенных вычислений, которые работают через интернет.
Первым подобным проектом был знаменитый SETI@Home — обработка на компьютере записи аналогового сигнала с радиотелескопа, получавшего сигналы из космоса. Любой пользователь ПК, где бы он ни находился, мог скачать на свой домашний компьютер кусочек радиоспектра из далекой галактики, проанализировать его на предмет наличия аномалий и отправить результаты в институт SETI в США. Этот проект приобрел настолько широкую популярность, что в 1999 году программу-клиент с заявленного сайта скачали миллионы людей. Напомним, что в то время вышел фильм «Контакт» с Джуди Фостер, так что поиск инопланетян с помощью радиотелескопов стал очень модным увлечением, особенно в США.
Поиск внеземного разума продолжается до сих пор, но главной заслугой проекта SETI@Home стало то, что он подтвердил работоспособность схемы распределенных вычислений, когда сотни тысяч обычных «персоналок» совершенно бесплатно выполняют работу, непосильную для самых мощных суперкомпьютеров стоимостью миллионы долларов.

3 Болезнь Альцгеймера — это болезнь 21 века, так как ей подвержены пожилые люди.
По статистике, болезнью Альцгеймера заболевают около 10% населения старше 65 лет и около 50% старше 85 лет. В США умирают из-за этого недуга примерно 100 тыс. человек ежегодно.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама