THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

«Основные Средства» завершают публикацию серии материалов об основных разновидностях вспомогательных приводов, устанавливаемых на серийных образцах автотранспортных средств для снижения потребности постоянного использования двигателя внутреннего сгорания. Напомним, краткий обзор подобных решений , охватывающих аккумуляторы, дизель-генераторы и емкостные накопители (конденсаторы), также обозначивший ряд других существующих подходов к этому вопросу, а также рассказ о вспомогательном гидроприводе . Сегодня мы рассмотрим маховичный накопитель.

Предыстория

Попутно уточним, что вспомогательный жидкостный и воздушный приводы – «близнецы-братья», поскольку хранящееся в баке масло и в пневмоцилиндре азот удачно дополняют друг друга. Именно в паре их использует компания PSA Peugeot Sitroên, чьи транспортные средства – самый известный пример серийного использования гидропневмонакопителя как вспомогательного источника тяги. Под воздействием кинетической энергии масло сжимает находящийся в цилиндре азот. При вытеснении азотом масла соединенный с колесами гидропневмонакопитель добавляет им крутящего момента. «Чистый» пневмопривод, напомним, рассматривался «ОС» в статье с красноречивым названием «Вместо бензина – воздух» .

Почему, к слову, в упомянутых материалах обойдена вниманием гидрообъемная передача? Дело в том, что, по сообщениям отраслевых СМИ, работа гидрообъемной передачи, обеспечивающей привод колес полуприцепа тягача КамАЗ-44108 (т. н. «автопоезд с активным прицепом») требует «Автономной насосной станции» (с ДВС).

Завершение указанной подборки кратким описанием используемого в качестве дополнительного источника тяги маховичного накопителя представляется логичным еще вот почему. Дело в том, что следующий шаг в этом направлении представляет собой «опосредованное использование вспомогательных приводов автотехники», назовем это так. Речь идет об оснащении транспортного средства сразу несколькими используемыми с этой целью устройствами. Дизель-генератор с аккумуляторным либо емкостным (конденсаторным) накопителем – давно известное решение? Не все так просто, в связи с чем просим наших читателей запомнить предлагаемое определение (в значении состава новейших вспомогательных «силовых пар» и порядка их работы) для краткого рассказа в дальнейшем о них на примере «седельника» Iveco-Glider и опытного автопоезда Renault-Optifuel (Lab 2). Между прочим, в выставочном Iveco-Glider «старшим» вспомогательным приводом выступает как раз маховик.

Маховичный (ранее – также маховичковый) накопитель, используемый в качестве вспомогательного источника тяги и «докручивающий» (как известно, неэкономичный при разгоне, на малых скоростях) двигатель, кроме назначения имеет целый ряд других отличий. Во-первых, речь не идет о знакомых по предмету «Теория и конструкция автомобиля» маховиках коробок передач стародавних грузовиков. Рассматриваемый нами вспомогательный, «запасной» маховик (в отличие от них выполнен из легких сплавов-композитов) вращается в безвоздушном пространстве, а в ряде случаев располагается горизонтально (что требует конической зубчатой передачи). Маховичный накопитель в 1960-е гг. обкатывался на различных классах автотехники, в 1980-е к его испытаниям вернулись в составе легковой Volvo (серии 200), а позже он «оседлал» автомобили гоночные. Сегодня в зарубежной печати все это направление, включая седельный тягач Glider – первый использующий его промышленно-выставочный образец такого класса техники, проходит под обозначением KERS (Kinetic Energy Recovery System).

Насколько далек СНГ от использования на линии маховичного накопителя при том, что его создание и проработка в этом качестве связаны с именем профессора МГИУ Н.В. Гулиа! С легкой руки ученого такой маховик стал известен с приставкой «супер». Среди прочего становилось понятно, что речь идет об устанавливаемом на транспортном средстве маховике другого предназначения.

Конструкция

Главная цель продвижения указанных накопителей – «секрет Полишинеля»: исключение затрат кинетической энергии на трение колодок о тормозные диски, возникающее при замедлении автомобиля, и ее преобразование во вращение маховика, который в последующем участвует в приводе транспортного средства. К одной из осей транспортного средства определенным образом подключается маховик-накопитель. При торможении он раскручивается через соединенный с осью транспортного средства вращающийся вал. Продолжая вращаться после остановки автомобиля, маховик «вкладывается» в его разгон при возобновлении движения. Иными словами, при торможении и на спусках кинетическая энергия не пропадает в тормозных устройствах автомобиля, а накапливается рассматриваемым маховиком. Особенно востребованным маховичный накопитель оказывается в «городском цикле» движения, отличающемся частыми троганиями и торможениями. ДВС и маховичный накопитель могут срабатывать и по отдельности, а именно: двигатель подзаряжает маховик, который затем в одиночку разгоняет транспортное средство (но и в этом случае энергия торможения возвращается маховичному накопителю).

Маховичные накопители последнего поколения (к примеру, Torqstor) отличают композитные сплавы на основе углеродистых волокон и размещение в безвоздушной среде для уменьшения потерь мощности. Современные маховичные накопители, выполняемые, повторим, из углепластика, отличающиеся навивкой из углеволокна, являются высокопрочными (как и защитный корпус); сталь в качестве материала их изготовления ушла в прошлое. В ряде случаев композитный сплав маховичных накопителей наполняют магнитной пудрой, попутно сводя на нет возникновение вихревых токов. Кроме того, намагниченный таким образом маховик способен работать в условиях повышенных температур не в ущерб сроку службы. В новейших образцах рассматриваемых устройств механическое соединение вала, привода маховичного накопителя и главной передачи в ряде случаев уступило место магнитному, исключающему проскальзывание вращающихся валов. Согласует частоту вращения маховика и в конечном счете крутящий момент колес, плавно меняет передаточное отношение между входным и выходным валами бесступенчатый привод, сегодня известный как Compact Variator Transmission (CVT-вариатор, тот же Torotrak, ранее – планетарный дисковый вариатор). Его наличие и надлежащий уровень изготовления – одно из главных условий использования маховичного накопителя.

Накопление значительной кинетической энергии предполагает использование высоко-оборотистых маховиков. Частота вращения их современных образцов достигает 60 000 об/мин, масса составляет от 6 до 100 и выше кг, а к примеру, при мощности 100 кВт они запасают 200 кДж энергии. Современные маховичные накопители для автотехники различных классов предлагают Ricardo, Williams Hybrid Power, Flybrid Automotive (с 2014 г. – Torotrak Group).

Свою новейшую разработку Ricardo представил в 2014 г. в составе дорожно-строительной техники. Изготовленный ранее автобус среднего класса Optare (Solo Midibus), оборудованный вспомогательным маховиком Ricardo, получил название Flybus. На автобусах в Лондоне в качестве вспомогательного привода испытывались маховики от компании Williams Hybrid Power (работающей с этом направлении на гоночные автомобили «Формула-1», а также вагоностроительным отделением многопрофильного французского объединения Alstom). Уточним, что в самом известном примере использования маховика – кстати, при маршрутных перевозках пассажиров – жиробусе «Орликон» (1950-е гг., в Швейцарии, Конго, Бельгии) он выступал в качестве основного источника тяги подвижного состава. Английский FlyBrid Automotive (Torotrak Group) взаимодействует с Volvo. В открытой печати об этом сообщалось в разрезе легковушки, однако шведская фирма – всемирно известный изготовитель тяжелых грузовиков и дорожно-строительной техники. Кроме того, как и в случае с Ricardo, сотрудничество ведется с изготовителем коммерческой автотехники (Ford), а также марками Jaguar, Rover.

Энергия, возникающая при торможении, преобразуется во вращение маховика и используется для привода колес транспортного средства. Пропорционально снижается потребность использования ДВС на малоэкономичных режимах – суть рекуперация.

Гладко было на бумаге, да забыли про овраги?

За городом маховик рискует остаться без «подкормки» из-за ограниченного числа торможений (выручит только движение «под гору»). В случае привода ДВС и маховичного накопителя на разные мосты (мол, вот и полный привод) появляется беспокойство за устойчивость подвижного состава. Конструкция маховичного накопителя обусловливает, в частности, выверенность значений угловой скорости, момента инерции, передаточных чисел, электронного регулирования. Требования к продуманности системы управления подтверждает одна только возможность участия водителя в подключении (клавишей приборной доски) маховичного накопителя для добавки «мощи» при разгоне, ускорении (к примеру, до 80 л.с. за 7 сек).

Стоит ли овчинка выделки в значении обоснованности использования маховичных накопителей для, пожалуй, ключевого показателя – расхода топлива? Судите сами, сообщалось о его снижении в этом случае на 5–25% (верхняя граница, понятно, для отдельных режимов движения). К числу общих преимуществ маховичных накопителей относят обещанный их изготовителями длительный срок службы, отсутствие потребности в редкоземельных элементах (хотя «батарейки» сегодня применяются на транспорте все шире для множества самых разных задач). Массогабаритные характеристики современных маховичных накопителей становятся все привлекательнее (сама за себя говорит возможность их установки на крыше современных трамваев). И наоборот, снижение грузоподъемности (вместимости) ранее во многом сдерживало их применение. Что ж, мы далеко ушли от приведенного на рисунке варианта размещения маховичного накопителя, однако в Porsche RSR (2011 г.) гироскопический энергоаккумулятор (как его иногда называют) занимает место рядом с водителем. Высокий момент инерции вызывает вопросы по балансу маневрирования, ведь маховик совершает десятки тысяч оборотов в минуту.

Уточним, что маховичный накопитель «дружен» как с ДВС, так и с электродвигателем. Мало того, в маховичном накопителе TorqStor от Ricardo подзарядка происходит при опускании стрелы экскаватора. Среди прочего это сводит на нет доводы об использовании данной разновидности накопителей только при торможении транспортного средства. Кроме того, управление вспомогательным маховиком может включать в себя электрогидравлические клапаны и гидронасос с электроприводом. Добавим, что выполненное во второй половине 1980-х гг. сотрудниками МАДИ, МАМИ, МАСИ (МГИУ), НАМИ математическое моделирование использования в составе ЛиАЗ-5256 маховичкового накопителя включало в себя однопоточную гидропередачу. Масса «маховичка» составляла 35 кг, частота вращения – до 12 000 об/мин, что вполне достаточно для автобуса.

Железнодорожный и городской рельсовый транспорт не является исключением в деле опытного применения вспомогательных маховиков. Известно, что маховичный накопитель ССМ (Голландия) еще в 2004 г. обеспечил проезд многоосного трамвая Alstom через один из мостов г. Роттердама без токоприемника. Оборудованные маховичным накопителем (энергии торможения и при движении «накатом», с последующим участием в разгоне вместе с ДВС) облегченные рельсовые автобусы Rail PPM с середины 2000-х гг. перевозят пассажиров на малодеятельной ветке г. Стоурбридж (Stourbridge) английского графства Западный Мидлендс.

Важно, что в городах США (Филадельфия и ряд др.) начато использование стационарных маховиков (также из углеродистых волокон), установленных на подстанциях метрополитена и запасающих энергию, возникающую при торможении поездов с ее последующей передачей на контактный рельс или питающий провод. Особенностью применения рассматриваемых накопителей в этом случае являются многочисленные участники проекта.

На электропоездах с их частыми остановками и разгонами аккумулирование кинетической энергии при торможении и использование её для последующего разгона чрезвычайно актуально. Для этого можно использовать маховик как накопитель энергии.

Оценим энергетические возможности маховика. Кинетическая энергия вращения равна

где J – момент инерции маховика относительно оси вращения, ω – угловая скорость. Пусть для примера, маховик имеет форму кольца с моментом инерции J = m R 2 . Кольцо соединяется со ступицей вала, например спицами, масса которых сравнительно невелика (рис. 11.3).

Определим наибольшую скорость вращения без разрыва кольца центробежными силами. В сечении кольца центробежные силы вы-зывают силы растяжения. Для их определения вырежем мысленно из кольца малый элемент длиной dl = Rdα. Рассмотрим равновесие элемента кольца. На него в системе отсчета "кольцо" действует центробежная сила инерции dF цб = dm ω 2 R. Масса элемента равна произведению плотности материала ρ на объем: dm = ρ S R dα . Здесь S – площадь сечения. Тогда величина центробежной силы, действующей на элемент, будет равна dF цб = ρ S ω 2 R 2 dα.

Со стороны кольца в сечении разрезов на элемент действуют две одинаковые по величине силы растяжения: F 1 и F 2 . По условию равновесия сумма сил должна быть равна нулю: Из треугольника сил (рис. 12.3).. Подставив формулу центробежной силы, получим силу, разрывающую кольцо

F = ρ S R 2 ω 2 . (11.7)

Напряжения растяжения не должны превышать предела прочности материала . Откуда предельная допустимая скорость вращения маховика будет равна

(11.8)

Подставив предельное значение угловой скорости вращения в формулу кинетической энергии маховика, получим величину энергии, которую может запасти вращающийся маховик без опасности разрыва

. (11.9)

Например, механическая энергия электропоезда массой 200 т, при начальной скорости V = 15 м/с, будет 22,5 МДж. Тогда объем стального маховика с допустимым напряжением σ пр = 0,5∙10 9 Н/м 2 . Не так уж много.

Задачи

1. При рекуперативном торможении поезда массой 360 т для обеспечения равномерного движения на спуске высотой 5 м энергия запасается в маховике в форме диска массой 1,0 т и радиусом 1 м. Определить скорость вращения маховика в конце спуска. Потерями на трение пренебречь.

2. К шкиву тягового двигателя, установленного на стенде, прижата тормозная колодка с силой 1,0 кН. Определить мощность двигателя при частоте вращения 1200 об/мин, если диаметр шкива 0,20 м, коэффициент трения скольжения 0,20.

3. Определить, во сколько раз отличается кинетическая энергия вагона массой 40 т с учетом и без учета энергии вращения колес. Масса колес 1800 кг, их радиус 0,51 м. Колеса считать однородными дисками.

4. Колесная пара массой 1400 кг закатывается со скоростью 1 м/с на подъем с уклоном 0,010. Определить кинетическую энергию, если колеса считать дисками. Какой путь пройдет колесная пара, если коэффициент трения качения 0,005? Определить силу сцепления колес с рельсами.

5. Определить, какой дополнительный путь мог бы проехать моторный вагон массой 40 т при скорости 10 м/с, если еще учесть кинетическую энергию якоря электродвигателя с моментом инерции 50 кг м 2 . Передаточное отношение редуктора 5,2. Коэффициент сопротивления 0,003.Диаметр колес 1,02 м.

6. С какой скоростью скатится порожний вагон массой 20 т с сортировочной горки высотой 2 м и длиной 120 м, если масса всех колес 6 т. Коэффициент сопротивления 0,002. Колеса считать дисками диаметром 1,02 м.

7. Колесная пара скатывается с горки высотой 0,50 м и длиной 15 м. Какую скорость приобретут колеса в конце спуска? Коэффициент сопротивления 0,004. Определить величину и направление силы сцепления. Колеса считать однородными дисками.


12. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Значение момента импульса в механике обусловлено тем, что наряду с импульсом и энергией он обладает свойством сохраняться в замкнутых системах тел.

Момент импульса

По определению, момент импульса материальной точки это вектор, равный векторному произведению радиус-вектора точки на вектор импульса:

. (12.1)

Выведем формулу момента импульса твердого тела при вращении вокруг неподвижной оси. Пусть твердое тело вращается относительно неподвижной оси. Траектории всех точек тела являются концентрическими окружностями. Для какой-то точки при скорости , момент импульса равен Раскрыв двойное векторное произведение, получим . Произведем суммирование моментов импульсов всех точек тела: . По определению сумма произведений масс частиц тела на квадраты их расстояний до оси вращения является моментом инерции тела J. Тогда момент импульса твердого тела относительно неподвижной оси вращения равен произведению момента инерции тела на угловую скорость :

. (12.2)

Момент импульса как и угловая скорость это аксиальный вектор, направление которого, определяется правилом буравчика. Если вращать вместе с телом ручки буравчика, то поступательное движение буравчика совпадает с направлением вектора момента импульса вдоль оси вращения.

Гиробус - особый вид троллейбуса, движущийся за счёт кинетической энергии вращающегося маховика. В настоящее время гиробусы не используются, хотя концепт гиробуса является объектом научно-технических изысканий. Давайте попробуем разобраться в этой теме подробнее. Сначала вспомним, с чего все начиналось.

По заказу швейцарской фирмы «Эрликон» Леонард Билл разработал в 1945 году проект маховичного автобуса, или, как его еще называли, гиробуса. Пять лет спустя был построен его опытный образец, а еще через три года в Цюрихе открылась первая транспортная линия, обслуживаемая новыми машинами. Гиробус был разработан как альтернатива для аккумуляторных автобусов, которые задумывались как альтернатива троллейбусам на тех маршрутах, где строительство контактной сети не было оправдано. Гиробус имел длину чуть более 10 м, массу 9600 кг и вмещал 70 человек. Под полом салона, между осями, располагался полуторатонный диск диаметром 1,63 м. Он был изготовлен из стали и помещен в контейнер с низким давлением для уменьшения трения. Но все равно каждые 800 м автобус вынужден был останавливаться для подзарядки. Три штанги, установленные на крыше, поднимались к контактам трехфазного источника тока напряжением 440-550 В. Напряжение подавалось к двухполюсному асинхронному электродвигателю, который и раскручивал маховик до рабочей скорости 2100-2900 об/мин. На зарядку уходило от 40 до 80 с. Гиробус трогался с места и благодаря хорошей приемистости за несколько секунд разгонялся до скорости 60 км/ч. Разгонный электродвигатель при этом автоматически переходил в режим генератора, от которого питался тяговый электромотор. «Маховоз» Билла имел 6 скоростей. КПД его был довольно высок - 70%. И все-таки, несмотря на явные преимущества (экологичность, дешевизна, бесшумность), в 1960 году эксплуатация гиробусов была прекращена. Причина - сложность управления и недовольство пассажиров частыми остановками. Гиробус или жиробус (образовано от греческого корня gyros - круг, оборот и новолатинизма omnibus - омнибус) - особый вид троллейбуса, движущийся за счёт кинетической энергии вращающегося маховика. В настоящее время гиробусы не используются, хотя концепт гиробуса является объектом научно-технических изысканий.

Эксплуатация в Швейцарии. Полноценная коммерческая эксплуатация гиробуса началась в октябре 1953 года. Этот маршрут соединял швейцарские коммуны Ивердон-ле-Бан и Грандсон. Однако он имел ограниченный пассажиропоток, и в 1960 году движение гиробусов там было закрыто по экономическим причинам (хотя с технической точки зрения опыт применения гиробусов на этом маршруте был успешным). Ни один из использовавшихся на швейцарском маршруте гиробусов не сохранился, как не сохранился и опытный, демонстрационный экземпляр. Эксплуатация в Бельгийском Конго. Вторая гиробусная система была открыта в Леопольдвиле (ныне Киншаса, тогда столица колонии Бельгийское Конго, ныне - Демократическая Республика Конго). В Конго в 1955-1956 годах использовалось двенадцать гиробусов (хотя некоторые источники ошибочно сообщают, что гиробусов было семнадцать), которые обслуживали четыре маршрута. Заправочные станции располагались через каждые два километра. Использовавшиеся в Киншасе гиробусы были самыми большими гиробусами из когда-либо существовавших: они имели 10,4 метров в длину, весили 10,9 тонн и вмещали до 90 пассажиров. Их максимальная скорость составляла 90 километров в час. Однако гиробусы в Конго быстро изнашивались. Вполне вероятно, что это было связано с привычкой водителей «сокращать» маршрут по дорогам без покрытия, которые превращались в настоящие болота после дождя. Другими проблемами были поломки подшипников маховика и высокая влажность, которая приводила к перегрузке мотора. Однако закрытие системы было вызвано высоким потреблением энергии. Фирма-эксплуататор сочла, что расход энергии слишком высок (он составлял 3,4 кВт/ч на километр для одного гиробуса). Движение гиробусов в Конго прекратилось летом 1959 года. Ставшие ненужными гиробусы были брошены ржаветь рядом с гаражом.

Эксплуатация в Бельгии. Третья и последняя гиробусная транспортная система имелась в Бельгии. Она состояла из одного маршрута (Gent Zuid-Merelbeke Molenhoek) и соединяла город Гент с его предместьем Мерелбеке. Эксплуатировало эту линию Национальное Общество Местных Железных Дорог (оно занималось эксплуатацией междугородных трамваев и автобусов). Подвижной состав состоял из трёх гиробусов, получивших обозначения G1, G2, G3. Для питания гиробусов использовалось напряжение в 380 вольт/50 герц. Гиробусное движение открылось 10 сентября 1956 года, однако просуществовало оно недолго, до 24 ноября 1959 года. Имелось несколько причин прекращения использования гиробуса в Бельгии. Прежде всего он отличался высоким потреблением энергии - 2,9 кВт·ч/км, в то время как трамвай, перевозящий большее (в несколько раз) число пассажиров расходовал 2-2,4 кВт·ч энергии на километр пути. Кроме того, гиробусы были признаны ненадёжными, к тому же на «заправку» уходило непозволительно много времени. Ко всему прочему, из-за большого веса (из-за тяжёлого маховика) гиробус повреждал дороги. Один из гентских гиробусов, G3, был сохранён. Его иногда демонстрируют на различных выставках и других подобных мероприятиях. Сейчас этот гиробус хранится во Фламандском музее трамваев и автобусов в Антверпене.

Почему этой темой решили заниматься в свое время? Все дело в существенных преимуществах такой конструкции. Во первых она практически бесшумна, во вторых намного экономичнее обычного двигателя внутреннего сгорания, в третьих этот вид транспорта экологически чистый, а в четвертых позволяет обойтись без контактной сети и рельсов как например на троллейбусах и трамваях. Электромотор, разгонявший маховик, получал энергию через три короткие штанги (мотор был трёхфазным), установленные на крыше гиробуса. Электродвигатель включался только эпизодически. Для этого вдоль маршрута следования гиробуса оборудовались «заправочные пункты» (обычно на некоторых остановках). На этих пунктах штанги гиробуса поднимались и прикасались к установленным над остановкой контактам трёхфазной электрической сети. После разгона маховика до нужных оборотов штанги опускались, двигатель выключался, и гиробус следовал до следующей «заправки».

Запас хода на одной заправке примерно 6 км, но для обеспечивания надежности системы гиробус заправлялся каждые 2км пути. С такой установкой гиробус разгонялся до 50-60км/час. Тормоза здесь тоже были электрические, энергия от торможения позволяла маховику покрутиться еще дольше т.е. имело место рекуперация. «Заправка» гиробуса занимала от 30 секунд до 3 минут. Для уменьшения времени заправки напряжение в сети было поднято с первоначальных 380 вольт до 500. Самое удивительное в том что в среднего размера гиробусе применяется трехтонный маховик линейная скорость обода которого достигает 900 км/час.

Преимущества: Бесшумный ход Экологически чистый Не требует непрерывной контактной сети (в отличие от троллейбуса) Возможность гибко изменять маршрутную сеть в случае необходимости. Недостатки: Большой вес - гиробус, предназначенный для перевозки 20 человек на 20 километров, должен иметь маховик массой в 3 тонны Вращающийся со скоростью в 3000 оборотов в минуту маховик требует особых мер безопасности (линейная скорость обода маховика достигает 900 километров в час) Управлять гиробусом сложно, так как его маховик обладает свойствами гироскопа (стремится сохранять неизменное положение в пространстве).

Век гиробусов оказался недолгим - в 60-ых годах все системы гиробусного транспорта были закрыты.

иробус G3 - единственный в мире сохранившийся гиробус. Хранится во Фламандском музее трамваев и автобусов в Антверпене.

Несмотря на неудачи, развитие гиробуса не прекратилось полностью. В 1979 году компания «Дженерал Электрик» (США) заключила с департаментом энергии правительства США четырёхлетний контракт (стоимостью в пять миллионов долларов) на развитие прототипа автобуса с маховиком. В 1980 году компания «Вольво» проводила эксперименты с маховиком, разгоняемым дизельным двигателем и используемым для рекуперации тормозной энергии. Впоследствии от этого проекта отказались в пользу гидравлических аккумуляторов. В 2005 году Center for Transportation and the Environment (центр транспорта и окружающей среды), работая совместно с Университетом Техаса в Остине, Центром электромеханики (Center for Electromechanics), Test Devices, Inc., и DRS начал поиски спонсора для финансирования разработки прототипа нового гиробуса. Сейчас в гибридном общественно транспорте, да и не только в общественном а и в болидах формулы 1 для рекуперации энергии торможения используется супер маховики которые имеют относительно небольшой вес и разгоняются до очень больших скоростей. Сам маховик как аккумулятор энергии имеет очень высокий КПД, вот если бы не трение воздуха и трение в подшипниках так вообще было бы кпд 99.99% так как известно из школьного курса физики ничего не может иметь КПД больше 100%. Кстати, по соотношению накопленных ватт легко переигрывает все типы существующие на сегодняшний день аккумуляторов. Интересный факт, энергия, запасаемая в его маховиках на единицу массы, превышает энергию тротила. А вот применение маховика в "Формуле-1" В 2007 году Джон Хилтон и Даг Кросс, основатели Flybrid, заявили о создании уникального компактного маховика массой около 5 кг, способного вращаться со скоростью до 64 000 об/мин. Стальная болванка, в разрезе похожая на двояковогнутую линзу, одетая в прочнейшую рубашку из карбона, была помещена ими в вакуумный корпус. Вал маховика установлен на специальных керамических подшипниках. Коренной компонент маховика Flybrid - патентованная система вращающихся центробежных уплотнений, обеспечивающих герметичность узла. Зачем тут вакуум? Элементарно: трение воздуха, кажущееся нам неощутимым, на таких скоростях приводит к нагреванию и постепенному разрушению маховика. Постепенное торможение болванки происходит в основном из-за трения в опорных подшипниках и системе прокладок. Раскрученный маховик за минуту теряет лишь 2% сохраненной энергии. Полная разрядка этой механической батареи наступает примерно через полчаса.

«Наш маховик как минимум втрое быстрее любого аналога, когда-либо установленного в автомобилях, - скорость вращения его внешней кромки достигает 660 м/с, что в два раза превосходит скорость звука в воздухе при нормальных условиях, - говорит Джон Хилтон. - Это позволило сделать его в девять раз меньше и легче. По габаритам он сопоставим с обычными дополнительными агрегатами, находящимися под капотом легковушек. Это полноценная гибридная система размером со штатный аккумулятор». Конечно, вряд ли на рулевом колесе легкового автомобиля появится красная кнопка Boost - система будет работать в автоматическом режиме. Традиционные гибриды не способны обеспечить высокую динамику из-за ограниченной производительности батарей, а в маховиковых системах накопленная энергия может быть использована почти мгновенно. При этом владелец получает еще и 30%-ную экономию топлива за счет возросшего КПД. Кроме того, механическая KERS впятеро дешевле электромеханической, надежна при любых температурах и выдерживает миллионы циклов разряда. Литий-ионная батарея используется лишь на 80% номинальной емкости - компьютер не допускает разряда более 80%, так как при полном разряде батарея выходит из строя. Маховик же можно разряжать до нуля. Безопасность маховика многократно проверена в серии краш-тестов - карбоновая рубашка не дает кускам стали разорвать корпус даже на самых высоких оборотах.

Вакуум взаперти . Слабое звено KERS Хилтона и Кросса - патентованные центробежные прокладки вала маховика. На предельных скоростях вращения в них возникает микроскопический зазор, и для откачки воздуха требуется дополнительный вакуумный насос с блоком контроля и управления. Инженеры Ricardo радикально пересмотрели конструкцию Flybrid и создали полностью герметичный модуль с поистине уникальной технологией передачи потока мощности под названием Kinergy. Базовый элемент Kinergy - бесконтактная магнитная муфта. Для Kinergy не требуется вакуумный насос и сложнейший в изготовлении комплекс прокладок вала. Энергия вращения колес поступает на маховик, а затем обратно на трансмиссию благодаря магнитной индукции, а не зубчатому или ременному зацеплению. Причем магниты здесь - постоянные. Намагниченный маховик стоит на двух подшипниках из стали и керамики, не требующих замены в течение всего срока эксплуатации узла. Для ликвидации возможного проникновения паров воды внутрь корпуса и постепенного разрушения подшипников инженеры Ricardo применяют адсорбирующий элемент с большой удельной емкостью, который поглощает все жидкости и газы, кроме водорода. По словам эксперта компании Ricardo Энди Аткинса, KERS на основе технологии Kinergy выдерживает не менее 10 млн циклов разряда, обладает удельной мощностью в 3 кВт на килограмм веса, а ее удельная энергоемкость равна 32,5 кДж на килограмм. Стоимость гибридной системы Kinergy для легкового автомобиля среднего класса составит не более $1300. Kinergy может применяться также в качестве идеальной трансмиссии для автомобилей - в сравнении с популярной ныне преселективной механикой маховик с магнитной муфтой на 20% экономичнее. Маховик, сэр! Эффективность и дешевизна Kinergy понравились автокомпаниям. В настоящее время уже начались испытания этой системы на прототипе Jaguar XJ следующего поколения и на знаменитых лондонских даблдеккерах. По словам Криса Боркбэнка, технолога компании Torotrak, стратегического партнера Ricardo, расход топлива двухэтажных автобусов снижается при этом почти на 30%. Потеря энергии на маховике в данном случае не является критическим фактором - средняя продолжительность остановки автобуса в Лондоне не превышает 55 с. Как считает Энди Аткинс, диапазон применения Kinergy огромен - любые нагруженные механические системы, работающие в условиях знакопеременных потоков мощности, будут на 20-30% более эффективны с новыми маховиками, чем без них. Локомотивы, трамваи, экскаваторы, горнодобывающая техника, краны, электростанции и многое другое - для Kinergy везде найдется достойное применение. Гоночные автомобили F1 - не исключение. Как знать - может быть, вскоре на штурвалах стремительных болидов вновь появится Большая Красная Кнопка? Опасность разрушения маховиков принято считать одним из проблемных факторов механических KERS. Но, по мнению его создателя Джона Хилтона, это не более чем миф. Еще в 2007 году компания Flybrid провела серию успешных тестов в знаменитом краш-центре F1 Кранфилд. Инженеры Центра смоделировали реальную аварийную ситуацию на трассе. Маховик был раскручен на стенде до предельной скорости 64 500 оборотов в минуту внутри макета гоночного болида, который затем разбили о неподвижное препятствие. Замедление составило более 20 g. Осмотр узла показал, что вакуумный корпус и сам маховик после удара абсолютно не пострадали. Более того, маховик продолжал вращение на скорости более 60 000 оборотов!

Механическая KERS по эффективности вдвое превосходит традиционную электромеханическую - она усваивает до 70% энергии торможения против 35%. В серийных гибридах кинетическая энергия превращается в электрическую, а затем - обратно. Маховику же не требуется конвертировать полученные джоули. С другой стороны, при необходимости маховик можно подключить к стартер-генератору. Такой вариант KERS мощностью 60 кВт и массой 27 кг был создан Хилтоном и Кроссом в кооперации с итальянской Magneti-Marelli. Излишки энергии запасаются в литий-ионной батарее. Естественно, при этом существенно падает КПД, зато время хранения не ограничивается затуханием вращения маховика. В стальную поверхность деталей интегрирован магнитный неодимовый порошок и более крупные упорядоченные постоянные магниты, скрепленные прочнейшей эпоксидной смолой. Вращение маховика вызывает разнонаправленное вращение внешнего ротора муфты, соединенного с тороидальным вариатором Torotrak с передаточным числом от 10:1 до 1:1. Для достижения максимальной эффективности бесконтактного зацепления стенку корпуса маховика пришлось сделать чрезвычайно тонкой - зазор между двумя вращающимися элементами муфты составляет всего 2 мм. По заявлению разработчиков, КПД магнитной передачи необычайно высок - 99,9%.

Британцы создали автобус с маховичным накопителем

Моделирование показало, что с новой системой автобус должен экономить более 10% топлива, а выбросы углекислого газа должны быть ниже примерно на 20%. Как всё сложится на практике, можно будет узнать только после тестов, к которым партнёры по проекту ныне и приступили. Инжиниринговая компания Ricardo и разработчик тороидальной бесступенчатой трансмиссии - компания Torotrak (обе с Туманного Альбиона), американский специалист по автоматическим коробкам передач Allison Transmission и британский производитель автобусов Optare построили гибридный автомобиль необычного типа. В то время как большинство компаний экспериментирует с гибридами, оснащёнными электромоторами и аккумуляторами, система рекуперации энергии в системе, названной Flybus, чисто механическая. При торможении кинетическая энергия автобуса передаётся через тороидальный вариатор и магнитную муфту на маховик из углеродного композита, помещённый в вакуумированный корпус (для снижения потерь). По мере замедления автобуса маховик раскручивается до 60 тысяч оборотов в минуту. При разгоне всё происходит в обратном порядке - маховик отдаёт свою энергию машине.

Вариатор Torotrak, сравнительно компактный и лёгкий, но при этом способный передавать в ту или иную сторону до 60 кВт мощности, а также маховичный накопитель Kinergy от Ricardo явились ключом ко всему проекту, занявшему несколько лет. Теперь система собрана и установлена на автобус Optare Solo Midibus.

"Flybus является следующим этапом в эволюции гибридных автобусов и технических решений, которые помогают снизить расход топлива и выбросы CO2, пишет PhysOrg.com. – При этом основной проблемой стандартных гибридов является цена". Именно из-за цены всё и затевалось. Ricardo заявляет, что система Flybus должна стоить лишь малую долю от электрической гибридной системы для автобусов.

Маховики разгоняют вагоны на зелёных линиях

Гибридный привод на транспорте продолжает наступление. Даже на железной дороге он завоёвывает, пока ещё, узкие ниши. Но, как показывают последние события, перспективы у поездов-гибридов - замечательные. Особенно если эти гибриды сделаны на удивление дешёвыми и простыми. Министерство транспорта Великобритании (Department for Transport) предоставило компании Govia франшизу на эксплуатацию ряда пассажирских железнодорожных линий в Западном Мидленде. Это заурядное событие из мира бизнеса нас не заинтересовало бы, если б не одно обстоятельство: на одну из небольших своих линий компания Govia намерена вывести пассажирские поезда, работающие на маховиках. Созданная в 1992 году фирма сосредоточила своё внимание на поездах с гибридным приводом. Но поскольку не то что передовые литий-ионные или никель-кадмиевые, но даже и простые свинцово-кислотные батареи, в количестве, достаточном для самоходного вагона (по запасу энергии и отдаваемой пиковой мощности), - стоят очень дорого, британские инженеры решили применить для накопления энергии маховики. Причём не стали ломать себе голову супермаховиками со сверхпрочными углеволоконными дисками, намотанными из нитей или лент. Тоже, заметим, - удовольствие не дешёвое. Нет, специалисты Parry People Movers, не мудрствуя лукаво, затолкали под пол своих вагонов 500-килограммовые стальные «блины» диаметром 1 метр. И позволили им раскручиваться до 2,6 тысячи оборотов в минуту.

И знаете, получилось эффективно. К настоящему моменту компания построила 12 таких маховичных аппаратов (разные образцы имеют вместимость от 2 до 80 человек). Эти мотовагоны даже выходили (в виде опытов) на небольшие местные линии в разных частях Британии и успешно перевозили пассажиров. Тысячи часов и 100 тысяч суммарно перевезённых человек показали 99-процентную надёжность (под которой подразумевается не только отсутствие поломок, но и опозданий). А экология? К примеру, на испытаниях, прошедших с декабря 2005-го по декабрь 2006-го, было подсчитано, что эмиссия углекислого газа у маховичных мини-поездов на 80% меньше, чем у обычных дизельных мотовагонов, которые возят пассажиров на тех же самых линиях с теми же скоростями (соответственно улучшилась и экономичность).

Теперь Govia выведет пару таких вагонов на одну из линий, где поезда-гибриды будут возить пассажиров как минимум до 2015-го (на такой срок компании выдана франшиза на пассажирские перевозки в данном районе «от имени» министерства транспорта). Потому следует поближе познакомиться с конструкцией экзотических вагонов. Прежде всего, следует сказать, что обычный ДВС в них тоже имеется. Это серийные двигатели от легковушек или небольших грузовиков. В той модели, что вскоре выйдет на рельсы в Западном Мидленде (а она называется PPM 60, соответственно, рассчитана на 60 пассажиров максимум - 25 сидят, остальные - стоят), использован экономичный 2-литровый дизель. Но предусмотрены варианты: можно заказать модель с ДВС, работающим на пропане. ДВС раскручивает маховик через ременную трансмиссию со сцеплением. Маховик же связан с ведущей осью трансмиссией гидростатической. Зачем такие сложности? Дело в том, что так было проще организовать рекуперативное торможение, когда маховик разгоняется от колёс, через ту же «гидростатику». А именно за счёт рекуперации такой вагон оказывается намного экономичнее обычного. Ведь у поезда на короткой линии очень рваный режим работы - то разгон, то остановка. Интересно, что поезд может останавливаться исключительно за счёт рекуперации - разгона маховика, при этом развивается замедление в 1 м/с2. Обычные тормоза также могут быть задействованы, если потребуется аварийная остановка. Максимальная скорость PPM 60, кстати, составляет 65 километров в час. Но это не всё. В разных моделях компании применены разные маховики. 500-килограммовый - это базовый. Но можно поставить маховик побольше - 750 килограммов и 1,2 метра в диаметре. Зачем он нужен? Тут начинается самое интересное. Помимо привода от ДВС, к маховику-накопителю подключён 20-киловаттный электромотор. Если станции линии оборудованы специальными розетками - запускать ДВС машинистам PPM и вовсе не придётся. Всего за 30 секунд стоянки у очередной платформы электромотор раскручивает маховик настолько, что одного этого запаса энергии хватает для пробега вагона в 800 метров - как раз до следующей станции, где PPM снова включается в розетку. В этом случае эксплуатация линии, над которой не протянуты провода, становится схожей с эксплуатацией линии электрифицированной. Даже лучше. Поскольку расход энергии - небольшой, а в случае аварии в сети есть возможность перейти на солярку или сжиженный газ. Или можно как-то комбинировать использование ДВС и электричества из розетки, оптимизируя свои расходы.

Британская компания пишет, что на одном галлоне топлива (имперском, очевидно - это примерно 4,5 литра) простой дизельный мотор-вагон, везущий 50 человек, проедет 3,2 километра, обычный междугородний автобус - 11,3 километра, а поезд PPM 50 - 24,1 километра (без подзарядок от сети). Выбор очевиден. Единственное, что может огорчить изобретателей PPM, - эту симпатичную технологию трудно адаптировать к большим поездам, работающим на длинных линиях. Ведь в этом случае придётся под полом каждого вагона монтировать эдак по пять, а то и по семь 750-килограммовых маховиков и все их соединять гидравлической трансмиссией с ведущими осями. Впрочем, небольшие вагоны PPM показали, что технология эта прекрасно работает. И кто знает, не попробуют ли когда-нибудь инженеры замахнуться на маховичный скорый?

Этот материал составлен на основе статьи «Обзор типов накопителей энергии», ранее опубликованной на http://khd2.narod.ru/gratis/accumul.htm, с добавлением нескольких абзацев из других источников, например, http://battery-info.ru/alternatives.

Одна из основных проблем альтернативной энергетики — неравномерность поступления ее из возобновляемых источников. Солнце светит только днем и в безоблачную погоду, ветер то дует, а то утихнет. Да и потребности в электроэнергии не постоянны, например, на освещение днем ее требуется меньше, вечером — больше. А людям нравится, когда по ночам города и деревни залиты огнями иллюминаций. Ну, или хотя бы просто улицы освещены. Вот и возникает задача — сохранить полученную энергию на какое-то время, чтобы использовать тогда, когда потребность в ней максимальна, а поступление недостаточно.

ГАЭС TaumSauk в США. Несмотря на небольшую мощность известна всему миру благодаря верхнему бассейну в форме сердца.

Существуют и менее масштабные гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.

К сожалению, гидравлические системы труднее поддерживать в должном техническом состоянии, чем твердотельные, - прежде всего это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И ещё одно важное условие - в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, - скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Накопители механической энергии

Механическая энергия проявляется при взаимодей­ствии, движении отдельных тел или их частиц. К ней относят кинетическую энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин).

Гироскопические накопители энергии

Гироскопический накопитель Уфимцева.

В гироскопических накопителях энергия запасается в виде кинетической энергии быстро вращающегося маховика. Удельная энергия, запасаемая на каждый килограмм веса маховика, значительно больше той, что можно запасти в килограмме статического груза, даже подняв его на большую высоту, а последние высокотехнологичные разработки обещают плотность накопленной энергии, сравнимую с запасом химической энергии в единице массы наиболее эффективных видов химического топлива. Другой огромный плюс маховика - это возможность быстрой отдачи или приёма очень большой мощности, ограниченной лишь пределом прочности материалов в случае механической передачи или «пропускной способностью» электрической, пневматической либо гидравлической передач.

К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. К тому же время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными… Впрочем, современные технологии позволяют кардинально увеличить время хранения - вплоть до нескольких месяцев.

Наконец, ещё один неприятный момент - запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении. Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.

Особенно перспективны так называемые супермаховики , состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше. Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков большого монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.

Современные конструкции с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. По оптимистичным оценкам, использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз - до 2-3 ГДж/кг (обещают, что одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость этого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам… Подробнее о маховичных накопителях можно почитать в книге Нурбея Гулиа .

Гирорезонансные накопители энергии

Эти накопители представляют собой тот же самый маховик, но выполненный из эластичного материала (например, резины). В результате у него появляются принципиально новые свойства. По мере нарастания оборотов на таком маховике начинают образовываться «выросты»-«лепестки» - сначала он превращается в эллипс, затем в «цветок» с тремя, четырьмя и более «лепестками»… При этом после начала образования «лепестков» скорость вращения маховика уже практически не меняется, а энергия запасается в резонансной волне упругой деформации материала маховика, формирующей эти «лепестки».

Такими конструкциями в конце 1970-х и начале 1980-х годов в Донецке занимался Н.З.Гармаш. Полученные им результаты впечатляют - по его оценкам, при рабочей скорости маховика, составляющей всего 7-8 тысяч об/мин, запасённой энергии было достаточно для того, чтобы автомобиль мог проехать 1500 км против 30 км с обычным маховиком тех же размеров. К сожалению, более свежие сведения об этом типе накопителей неизвестны.

Механические накопители с использованием сил упругости

Этот класс устройств обладает очень большой удельной ёмкостью запасаемой энергии. При необходимости соблюдения небольших габаритов (несколько сантиметров) его энергоёмкость - наибольшая среди механических накопителей. Если требования к массогабаритным характеристикам не столь жёсткие, то большие сверхскоростные маховики превосходят его по энергоёмкости, но они гораздо более чувствительны к внешним факторам и обладают намного меньшим временем хранения энергии.

Пружинные механические накопители

Сжатие и распрямление пружины способно обеспечить очень большой расход и поступление энергии в единицу времени - пожалуй, наибольшую механическую мощность среди всех типов накопителей энергии. Как и в маховиках, она ограничена лишь пределом прочноcти материалов, но пружины обычно реализуют рабочее поступательное движение непосредственно, а в маховиках без довольно сложной передачи не обойтись (не случайно в пневматическом оружии используются либо механические боевые пружины, либо баллончики с газом, которые по своей сути являются предварительно заряженными пневматическими пружинами; до появления огнестрельного оружия для боя на дистанции применялось также именно пружинное оружие - луки и арбалеты, ещё задолго до новой эры полностью вытеснившие в профессиональных войсках пращу с её кинетическим накоплением энергии).

Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость, а кристаллическая решётка металла пружины потихоньку изменяется, причём чем больше внутренние напряжения и чем выше окружающая температура, тем скорее и в большей степени это произойдёт. Поэтому через несколько десятилетий сжатая пружина, не изменившись внешне, может оказаться «разряженной» полностью или частично. Тем не менее, качественные стальные пружины, если они не подвергаются перегреву или переохлаждению, способны работать веками без видимой потери ёмкости. Например, старинные настенные механические часы с одного полного завода по-прежнему идут две недели - как и более полувека назад, когда они были изготовлены.

При необходимости постепенной равномерной «зарядки» и «разрядки» пружины обеспечивающий это механизм может оказаться весьма сложным и капризным (загляните в те же механические часы - по сути, множество шестерёнок и других деталей служат именно этой цели). Упростить ситуацию может электромеханическая передача, но она обычно накладывает существенные ограничения на мгновенную мощность такого устройства, а при работе с малыми мощностями (несколько сот ватт и менее) её КПД слишком низок. Отдельной задачей является накопление максимальной энергии в минимальном объёме, так как при этом возникают механические напряжения, близкие к пределу прочности используемых материалов, что требует особо тщательных расчётов и безупречного качества изготовления.

Говоря здесь о пружинах, нужно иметь в виду не только металлические, но и другие упругие цельнотелые элементы. Самые распространённые среди них - это резиновые жгуты. Кстати, по энергии, запасаемой на единицу массы, резина превосходит сталь в десятки раз, зато и служит она примерно во столько же раз меньше, причём, в отличии от стали, теряет свои свойства уже через несколько лет даже без активного использования и при идеальных внешних условиях - в силу относительно быстрого химического старения и деградации материала.

Газовые механические накопители

В этом классе устройств энергия накапливается за счёт упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасённую энергию, сжатый газ подаётся в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор. Вместо турбины можно использовать поршневой двигатель, который более эффективен при небольших мощностях (кстати, существуют и обратимые поршневые двигатели-компрессоры).

Практически каждый современный промышленный компрессор оснащён подобным аккумулятором - ресивером. Правда, давление там редко превышает 10 атм, и потому запас энергии в таком ресивере не очень большой, но и это обычно позволяет в несколько раз увеличить ресурс установки и сэкономить энергию.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить достаточно высокую удельную плотность запасённой энергии в течение практически неограниченного времени (месяцы, годы, а при высоком качестве ресивера и запорной арматуры - десятки лет, - недаром пневматическое оружие, использующее баллончики со сжатым газом, получило такое широкое распространение). Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, - устройства достаточно сложные, капризные и имеющие весьма ограниченный ресурс.

Перспективной технологией создания запасов энергии является сжатие воздуха за счет доступной энергии в то время, когда непосредственная потребность в последней отсутствует. Сжатый воздух охлаждается и хранится при давлении 60-70 атмосфер. При необходимости расходовать запасенную энергию, воздух извлекается из накопителя, нагревается, а затем поступает в специальную газовую турбину, где энергия сжатого и нагретого воздуха вращает ступени турбины, вал которой соединен с электрическим генератором, выдающим электроэнергию в энергосистему.

Для хранения сжатого воздуха предлагается, например, использовать подходящие горные выработки или специально создаваемые подземные емкости в соляных породах. Концепция не нова, хранение сжатого воздуха в подземной пещере было запатентовано еще в 1948 году, а первый завод с накопителем энергии сжатого воздуха (CAES - compressed air energy storage) с мощностью 290 МВт работает на электростанции Huntorf в Германии с 1978 года. На этапе сжатия воздуха большое количество энергии теряется в виде тепла. Эта утерянная энергия должна быть компенсирована сжатому воздуху до этапа расширения в газовой турбине, для этого и используется углеводородное топливо, с помощью которого повышают температуру воздуха. Это значит, что установки имеют далеко не стопроцентный КПД.

Существует перспективное направление для повышения эффективности CAES. Оно заключается в удержании и сохранении тепла, выделяющегося при работе компрессора на этапе сжатия и охлаждения воздуха, с последующим его повторным использованием при обратном нагреве холодного воздуха (т.н. рекуперация). Тем не менее, этот вариант CAES имеет существенные технические сложности, особенно в направлении создания системы длительного сохранения тепла. В случае решения этих проблем, AA-CAES (Advanced Adiabatic-CAES) может проложить путь для крупномасштабных систем хранения энергии, проблема была поднята исследователями по всему миру.

Участники канадского стартапа Hydrostor другое необычное решение - закачивать энергию в подводные пузыри.

Накопление тепловой энергии

В наших климатических условиях очень существенная (зачастую - основная) часть потребляемой энергии расходуется на обогрев. Поэтому было бы очень удобно аккумулировать в накопителе непосредственно тепло и затем получать его обратно. К сожалению, в большинстве случаев плотность запасённой энергии очень мала, а сроки её сохранения весьма ограничены.

Существуют тепловые аккумуляторы с твёрдым либо плавящимся теплоаккумулирующим материалом; жидкостные; паровые; термохимические; с электронагревательным элементом. Тепловые аккумуляторы могут подключаться в систему с твердотопливным котлом, в гелиосистему или комбинированную систему.

Накопление энергии за счёт теплоёмкости

В накопителях этого типа аккумулирование тепла осуществляется за счет теплоемкости вещества, служащего рабочим телом. Классическим примером теплового аккумулятора может служить русская печь. Ее протапливали один раз в день и она потом обогревала дом в течение суток. В наше время под тепловым аккумулятором чаще всего подразумевают ёмкости для хранения горячей воды, обшитые материалом с высокими теплоизоляционными свойствами.

Существуют теплоаккумуляторы и на основе твердых теплоносителей, например, в керамических кирпичах.

Различные вещества обладают разной теплоёмкостью. У большинства она находится в пределах от 0.1 до 2 кДж/(кг·К). Аномально большой теплоёмкостью обладает вода - её теплоёмкость в жидкой фазе составляет примерно 4.2 кДж/(кг·К). Более высокую теплоёмкость имеет только весьма экзотический литий - 4.4 кДж/(кг·К).

Однако помимо удельной теплоёмкости (по массе) надо учитывать и объёмную теплоёмкость , позволяющую определить, сколько тепла нужно, чтобы изменить на одну и ту же величину температуру одного и того же объёма различных веществ. Она вычисляется из обычной удельной (массовой) теплоёмкости умножением её на удельную плотность соответствующего вещества. На объёмную теплоёмкость следует ориентироваться тогда, когда важнее объём теплоаккумулятора, чем его вес. Например, удельная теплоёмкость стали всего 0.46 кДж/(кг·К), но плотность 7800 кг/куб.м, а, скажем, у полипропилена - 1.9 кДж/(кг·К) - в 4 с лишним раза больше, однако плотность его составляет всего 900 кг/куб.м. Поэтому при одинаковом объёме сталь сможет запасти в 2.1 раза больше тепла, чем полипропилен, хотя и будет тяжелее почти в 9 раз. Впрочем, благодаря аномально большой теплоёмкости воды ни один материал не может превзойти её и по объёмной теплоёмкости. Однако объёмная теплоемкость железа и его сплавов (сталь, чугун) отличается от воды менее, чем на 20% - в одном кубическом метре они могут запасти более 3.5 МДж тепла на каждый градус изменения температуры, чуть-чуть меньше объёмная теплоёмкость у меди - 3.48 МДж/(куб.м·К). Теплоёмкость воздуха в нормальных условиях составляет примерно 1 кДж/кг, или 1.3 кДж/куб.м, поэтому чтобы нагреть кубометр воздуха на 1°, достаточно охладить на тот же градус чуть менее 1/3 литра воды (естественно, более горячей, чем воздух).

В силу простоты устройства (что может быть проще неподвижного сплошного куска твёрдого вещества либо закрытого резервуара с жидким теплоносителем?) подобные накопители энергии имеют практически неограниченное число циклов накопления-отдачи энергии и очень длительный срок службы - для жидких теплоносителей до высыхания жидкости либо до повреждения резервуара от коррозии или других причин, для твёрдотельных отсутствуют и эти ограничения. Но вот время хранения весьма ограничено и, как правило, составляет от нескольких часов до нескольких суток - на больший срок обычная теплоизоляция удержать тепло уже не способна, да и удельная плотность запасаемой энергии невелика.

Наконец, следует подчеркнуть ещё одно обстоятельство, - для эффективной работы важна не только теплоёмкость, но и теплопроводность вещества теплоаккумулятора. При высокой теплопроводности даже на достаточно быстрые изменения наружных условий теплоаккумулятор отреагирует всей своей массой, а следовательно и всей запасённой энергией - то есть максимально эффективно. В случае же плохой теплопроводности среагировать успеет только поверхностная часть теплоаккумулятора, а до глубинных слоёв кратковременные изменения внешних условий просто не успеют дойти, и существенная часть вещества такого теплоаккумулятора будет фактически исключена из работы. Полипропилен, упомянутый в рассмотренном чуть выше примере, имеет теплопроводность почти в 200 раз меньше, чем сталь, и потому, невзирая на достаточно большую удельную теплоёмкость, эффективным теплоаккумулятором быть не может. Впрочем, технически проблема легко решается организацией специальных каналов для циркуляции теплоносителя внутри теплоаккумулятора, но очевидно, что такое решение существенно усложняет конструкцию, снижает её надёжность и энергоёмкость и непременно будет требовать периодического техобслуживания, которое вряд ли нужно монолитному куску вещества.

Как это не покажется странным, иногда нужно бывает накапливать и хранить не тепло, а холод. В США уже более десяти лет работают компании, которые предлагают «аккумуляторы» на основе льда для установки в кондиционеры воздуха. В ночное время, когда электроэнергии в избытке и она продаётся по сниженным тарифам, кондиционер замораживает воду, то есть переходит в режим холодильника. В дневное время он потребляет в несколько раз меньше энергии, работая как вентилятор. Энергопрожорливый компрессор на это время отключается. Подробнее .

Накопление энергии при смене фазового состояния вещества

Если внимательно посмотреть на тепловые параметры различных веществ, то можно увидеть, что при смене агрегатного состояния (плавлении-твердении, испарении-конденсации) происходит значительное поглощение или выделение энергии. Для большинства веществ тепловой энергии таких превращений достаточно, чтобы изменить температуру того же количества этого же вещества на многие десятки, а то и сотни градусов в тех диапазонах температур, где его агрегатное состояние не меняется. А ведь, как известно, пока агрегатное состояние всего объёма вещества не станет одним и тем же, его температура практически постоянна! Поэтому было бы очень заманчиво накапливать энергию за счёт смены агрегатного состояния - энергии накапливается много, а температура изменяется мало, так что в результате не потребуется решать проблемы, связанные с нагревом до высоких температур, и в то же время можно получить хорошую ёмкость такого теплоаккумулятора.

Плавление и кристаллизация

К сожалению, в настоящее время практически нет дешёвых, безопасных и устойчивых к разложению веществ с большой энергией фазового перехода, температура плавления которых лежала бы в наиболее актуальном диапазоне - примерно от +20°С до +50°С (максимум +70°С - это ещё относительно безопасная и легко достижимая температура). Как правило, в этом диапазоне температур плавятся сложные органические соединения, отнюдь не полезные для здоровья и зачастую быстро окисляющиеся на воздухе.

Пожалуй, наиболее подходящими веществами являются парафины, температура плавления большинства которых в зависимости от сорта лежит в диапазоне 40..65°С (правда, существуют и «жидкие» парафины с температурой плавления 27°С и менее, а также родственный парафинам природный озокерит , температура плавления которого лежит в пределах 58..100°С). И парафины, и озокерит вполне безопасны и используются в том числе и в медицинских целях для непосредственного прогрева больных мест на теле. Однако при хорошей теплоёмкости теплопроводность их весьма мала - мала настолько, что приложенный к телу парафин или озокерит, нагретый до 50-60°С, ощущается лишь приятно горячим, но не обжигающим, как это было бы с водой, нагретой до той же температуры, - для медицины это хорошо, но для теплоаккумулятора это безусловный минус. Кроме того, эти вещества не так уж дёшевы, скажем, оптовая цена на озокерит в сентябре 2009 г. составляла порядка 200 рублей за килограмм, а килограмм парафина стоил от 25 рублей (технический) до 50 и выше (высокоочищенный пищевой, т.е. пригодный для использования при упаковке продуктов). Это оптовые цены для партий в несколько тонн, в розницу всё дороже как минимум раза в полтора.

В результате экономическая эффективность парафинового теплоаккумулятора оказывается под большим вопросом, - ведь килограмм-другой парафина или озокерита годится лишь для медицинского прогрева заломившей поясницы в течении пары десятков минут, а для обеспечения стабильной температуры более-менее просторного жилища в течении хотя бы суток масса парафинового теплоаккумулятора должна измеряться тоннами, так что его стоимость сразу приближается к стоимости легкового автомобиля (правда, нижнего ценового сегмента)! Да и температура фазового перехода в идеале всё же должна точно соответствовать комфортному диапазону (20..25°С) - иначе всё равно придётся организовывать какую-то систему регулирования теплообмена. Тем не менее, температура плавления в районе 50..54°С, характерная для высокоочищенных парафинов, в сочетании с высокой теплотой фазового перехода (немногим более 200 кДж/кг) очень хорошо подходит для теплоаккумкулятора, рассчитанного на обеспечение горячего водоснабжения и водяного отопления, проблема лишь в невысокой теплопроводности и высокой цене парафина. Зато в случае форс-мажора сам парафин можно использовать в качестве топлива с хорошей теплотворной способностью (хотя сделать это не так просто - в отличии от бензина или керосина, жидкий и тем более твёрдый парафин на воздухе не горит, обязательно нужен фитиль или другое устройство для подачи в зону горения не самого парафина, а только его паров)!

Примером накопителя тепловой энергии на основе эффекта плавления и кристаллизации может служить система хранения тепловой энергии TESS на основе кремния, которую разработала австралийская компания Latent Heat Storage.

Испарение и конденсация

Теплота испарения-конденсации, как правило, в несколько раз превышает теплоту плавления-кристаллизации. И вроде бы есть не так уж мало веществ, испаряющихся в нужном диапазоне температур. Помимо откровенно ядовитых сероуглерода, ацетона, этилового эфира и т.п., есть и этиловый спирт (его относительная безопасность ежедневно доказывается на личном примере миллионами алкоголиков по всему миру!). В нормальных условиях спирт кипит при 78°С, а его теплота испарения в 2.5 раза больше теплоты плавления воды (льда) и эквивалентна нагреву того же количества жидкой воды на 200°. Однако в отличии от плавления, когда изменения объёма вещества редко превышают несколько процентов, при испарении пар занимает весь предоставленный ему объём. И если этот объём будет неограничен, то пар улетучится, безвозвратно унося с собой всю накопленную энергию. В замкнутом же объёме сразу начнёт расти давление, препятствуя испарению новых порций рабочего тела, как это имеет место в самой обычной скороварке, поэтому смену агрегатного состояния испытывает лишь небольшой процент рабочего вещества, остальное же продолжает нагреваться, находясь в жидкой фазе. Здесь открывается большое поле деятельности для изобретателей - создание эффективного теплоаккумулятора на основе испарения и конденсации с герметичным переменным рабочим объёмом.

Фазовые переходы второго рода

Помимо фазовых переходов, связанных с изменением агрегатного состояния, некоторые вещества и в рамках одного агрегатного состояния могут иметь несколько различных фазовых состояний. Смена таких фазовых состояний, как правило, также сопровождается заметным выделением или поглощением энергии, хотя обычно гораздо менее значительным, чем при изменении агрегатного состояния вещества. Кроме того, во многих случаях при подобных изменениях в отличии от смены агрегатного состояния имеет место температурный гистерезис - температуры прямого и обратного фазового перехода могут существенно различаться, иногда на десятки и даже на сотни градусов.

Электрические накопители энергии

Электричество - наиболее удобная и универсальная форма энергии в современном мире. Не удивительно, что именно накопители электрической энергии развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью пока слишком дороги для хранения больших запасов энергии при массовом применении и весьма недолговечны.

Конденсаторы

Самые массовые «электрические» накопители энергии - это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии - как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.

Конденсаторы можно разделить на два больших класса - неполярные (как правило, «сухие», т.е. не содержащие жидкого электролита) и полярные (обычно электролитические). Использование жидкого электролита обеспечивает существенно бóльшую удельную ёмкость, но почти всегда требует соблюдения полярности при подключении. Кроме того, электролитические конденсаторы часто более чувствительные к внешним условиям, прежде всего к температуре и имеют меньший срок службы (с течением времени электролит улетучивается и высыхает).

Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике - на большее их пока не хватает.

Которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых - относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами - обычно запас энергии составляет от единиц до нескольких сотен джоулей.

Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда - от нескольких часов до нескольких недель максимум.

Электрохимические аккумуляторы

Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду - от мобильного телефона до самолётов и кораблей. Вообще говоря, они работают на основе некоторых химических реакций и поэтому их можно было бы отнести к следующему разделу нашей статьи -«Химические накопители энергии». Но поскольку этот момент обычно не подчеркивается, а обращается внимание на то, что аккумуляторы накапливают электричество, рассмотрим их здесь.

Как правило, при необходимости запасать достаточно большую энергию - от нескольких сотен килоджоулей и более - используются свинцово-кислотные аккумуляторы (пример - любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов - никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами, такими как мобильные телефоны, фото- и видеокамеры, ноутбуки и т.п.

В последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной ёмкости, в отличие от свинцово-кислотных они позволяют практически полностью использовать свою номинальную ёмкость, считаются более надёжными и имеющими бóльший срок службы, а их энергетическая эффективность в полном цикле превышает 90%, в то время как энергетическая эффективность свинцовых аккумуляторов при заряде последних 20% ёмкости может падать до 50%.

По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса - так называемые тяговые и стартовые. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное - контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя.

К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев от 250 до 2000, а при несоблюдении рекомендаций производителей - гораздо меньше), и даже при отсутствии активной эксплуатации большинство типов аккумуляторов через несколько лет деградируют, утрачивая свои потребительские свойства. При этом срок службы многих видов аккумуляторов идёт не с начала их эксплуатации, а с момента изготовления. Кроме того, для электрохимических аккумуляторов характерны чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также довольно ограничено - обычно от недели до года. У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.

Химические накопители энергии

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Можно выделить «топливные» и «безтопливные» разновидности. В отличии от низкотемпературных термохимических накопителей (о них чуть позже), которые могут запасти энергию, просто будучи помещёнными в достаточно тёплое место, здесь не обойтись без специальных технологий и высокотехнологичного оборудования, иногда весьма громоздкого. В частности, если в случае низкотемпературных термохимических реакций смесь реагентов обычно не разделяется и всегда находится в одной и той же ёмкости, реагенты для высокотемпературных реакций хранятся отдельно друг от друга и соединяются лишь тогда, когда нужно получить энергию.

Накопление энергии наработкой топлива

На этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например, из воды выделяется водород - прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно (для кислорода это необходимо в условиях замкнутого изолированного объекта - под водой или в космосе) либо за ненадобностью «выброшен», поскольку в момент использования топлива этого окислителя будет вполне достаточно в окружающей среде и нет необходимости тратить место и средства на его организованное хранение.

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии непосредственно в нужной форме, независимо от того, каким способом было получено это топливо. Например, водород может дать сразу тепло (при сжигании в горелке), механическую энергию (при подаче его в качестве топлива в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке). Как правило, такие реакции окисления требуют дополнительной инициации (поджига), что весьма удобно для управления процессом извлечения энергии.

Накопление энергии с помощью термохимических реакций

Давно и широко известна большая группа химических реакций, которые в закрытом сосуде при нагревании идут в одну сторону с поглощением энергии, а при охлаждении - в обратную с выделением энергии. Такие реакции часто называют термохимическими . Энергетическая эффективность таких реакций, как правило, меньше, чем при смене агрегатного состояния вещества, однако тоже весьма заметна.

Подобные термохимические реакции можно рассматривать как своего рода смену фазового состояния смеси реагентов, и проблемы здесь возникают примерно те же - трудно найти дешёвую, безопасную и эффективную смесь веществ, успешно действующую подобным образом в диапазоне температур от +20°С до +70°С. Впрочем, один подобный состав известен уже давно - это глауберова соль.

Мирабилит (он же глауберова соль, он же десятиводный сульфат натрия Na 2 SO 4 · 10H 2 O) получают в результате элементарных химических реакций (например, при добавлении поваренной соли в серную кислоту) или добывают в «готовом виде» как полезное ископаемое.

С точки зрения аккумуляции тепла наиболее интересная особенность мирабилита заключается в том, что при повышении температуры выше 32°С связанная вода начинает освобождаться, и внешне это выглядит как «плавление» кристаллов, которые растворяются в выделившейся из них же воде. При снижении температуры до 32°С свободная вода вновь связывается в структуру кристаллогидрата - происходит «кристаллизация». Но самое главное - теплота этой реакции гидратации-дегидратации весьма велика и составляет 251 кДж/кг, что заметно выше теплоты «честного» плавления-кристаллизации парафинов, хотя и на треть меньше, чем теплота плавления льда (воды).

Таким образом, теплоаккумулятор на основе насыщенного раствора мирабилита (насыщенного именно при температуре выше 32°С) может эффективно поддерживать температуру на уровне 32°С с большим ресурсом накопления или отдачи энергии. Конечно, для полноценного горячего водоснабжения эта температура слишком низка (душ с такой температурой в лучшем случае воспринимается как «весьма прохладный»), но вот для подогрева воздуха такой температуры может оказаться вполне достаточно.

Подробнее о теплоаккумуляторе на основе мирабилита можно прочитать на сайте «DelaySam.ru» .

Безтопливное химическое накопление энергии


Банка кофе с разогревом за счёт гашения извести .

В данном случае на этапе «зарядки» из одних химических веществ образуются другие, и в ходе этого процесса в образующихся новых химических связях запасается энергия (скажем, гашёная известь при помощи нагрева переводится в негашёное состояние).

При «разрядке» происходит обратная реакция, сопровождаемая выделением ранее запасённой энергии (обычно в виде тепла, иногда дополнительно в виде газа, который можно подать в турбину) - в частности, именно это имеет место при «гашении» извести водой. В отличие от топливных методов, для начала реакции обычно достаточно просто соединить реагенты друг с другом - дополнительная инициация процесса (поджиг) не требуется.

По сути, это разновидность термохимической реакции, однако в отличии от низкотемпературных реакций, описанных при рассмотрении тепловых накопителей энергии и не требующих каких-то особых условий, здесь речь идёт о температурах в многие сотни, а то и тысячи градусов. В результате количество энергии, запасаемой в каждом килограмме рабочего вещества, существенно возрастает, но и оборудование во много раз сложнее, объёмнее и дороже, чем пустые пластиковые бутылки или простой бак для реагентов.

Необходимость расхода дополнительного вещества - скажем, воды для гашения извести - не является существенным недостатком (при необходимости можно собрать воду, выделяющуюся при переходе извести в негашёное состояние). А вот особые условия хранения этой самой негашёной извести, нарушение которых чревато не только химическими ожогами, но и взрывом, переводят этот и ему подобные способы в разряд тех, которые вряд ли выйдут в широкую жизнь.

Другие типы накопителей энергии

Помимо описанных выше, есть и другие типы накопителей энергии. Однако в настоящее время они весьма ограничены по плотности запасаемой энергии и времени её хранения при высокой удельной стоимости. Поэтому пока они больше применяются для развлечения, а их эксплуатация в сколько-нибудь серьёзных целях не рассматривается. Примером являются фосфорецирующие краски, запасающие энергию от яркого источника света и затем светящиеся в течение нескольких секунд, а то и долгих минут. Их современные модификации уже давно не содержат ядовитого фосфора и вполне безопасны даже для использования в детских игрушках.

Суперпроводящие накопители магнитной энергии хранят её в поле большой магнитной катушки с постоянным током. Она может быть преобразована в переменный электрический ток по мере необходимости. Низкотемпературные накопители охлаждаются жидким гелием и доступны для промышленных предприятий. Высокотемпературные накопители, охлаждаемые жидким водородом, всё ещё находятся в стадии разработки и могут стать доступны в будущем.

Суперпроводящие накопители магнитной энергии имеют значительные размеры и обычно используются в течение коротких периодов времени, например, во время переключений.

Скорее всего в этой статье отражены не все возможные способы накопления и сохранения энергии. Вы можете сообщить о других вариантах либо в комментариях, либо электронным письмом на адрес kos at altenergiya dot ru.

Если позволите каплю эмоций, я не перестаю удивляться, какие страсти разгораются каждый раз, когда разговор в этой колонке заходит о «чистой энергии». Накал прошлонедельной дискуссии об эффективности солнечных батарей (см. « ») оказался таким, что, посмотрев со стороны, можно подумать, будто обсуждают большую политику или как минимум сравнивают операционные системы! И лично для меня это лучшее доказательство того, что тема только кажется отработанной и устоявшейся, а на самом деле даже по элементарным вроде бы вопросам (вроде практической пригодности солнечных батарей в облачную погоду) существуют диаметрально противоположные точки зрения. Так что если у вас есть чем крыть, есть цифры, а тем более личный опыт, очень прошу поучаствовать в новой дискуссии. Потому что сегодня я рискну продолжить начатый в две прошедших недели разговор. Ведь энергию Солнца или ветра мало получить, её мало распределить по потребителям, её ещё жизненно важно научиться накапливать!

В самом деле, что проку от той же трёхкиловаттной икеевской солнечной электростанции, занимающей крышу частного дома, если она, способная с избытком удовлетворить потребности целого домохозяйства, работает только в светлое время суток? Идеально было бы накапливать остающийся во время генерации излишек («скушать» три киловатта - не шутка, мало какой бытовой прибор поглощает даже киловатт, и работают такие приборы, как правило, недолго: проточный нагреватель воды, духовка… У меня, правда, греет дом полуторакиловаттный биткойновый риг, но это редкость, согласитесь) и отдавать его по мере надобности ночью. Что ж, предположим, на ночь и сумерки, занимающие, скажем, 18 часов, дому нужны те же самые три киловатта. Значит, бытовой накопитель электроэнергии должен запасти, грубо, 54 киловатт-часа. Много это или мало?

Нормально. И решение этой проблемы «в лоб», установкой электрического аккумулятора приемлемых габаритов и эксплуатационных свойств, то есть литий-ионного, уже возможно. Больше того, выпускаются серийные образцы аккумуляторных батарей именно такой ёмкости: это батареи электромобилей – к примеру, знакомого вам Model S от Tesla Motors, базовая комплектация которого включает батарею с ёмкостью 60 кВт ч. Одна проблема: стоит такое решение 10 тысяч американских долларов, то есть дороже всей солнечной электростанции от той же IKEA. И ценам Элона Маска можно верить: они хоть и собирают свои батареи из чужих элементов (основу производит Panasonic), но используют их не только в автомобилях, а и на бытовых солнечных электростанциях, устанавливаемых компанией Solar City ( , входит в число крупнейших установщиков солнечных батарей в США). Поскольку спроса на такие батареи, естественно, нет, Solar City пока ограничивается установкой сравнительно небольших аккумуляторов, способных поддержать базовые электропотребности среднего дома лишь на время кратковременных перебоев энергоснабжения.

Но это ещё не все плохие новости. Цифра, которую мы получили выше, можно сказать, обывательская. А профессионалы говорят так: запас энергии в доме должен быть минимум на три (облачных) дня, а лучше – на пять (тогда аккумуляторы прослужат дольше)! Так что в существующем виде электрические аккумуляторы неприемлемы даже для домашних нужд, не говоря уже о мощных электростанциях. Но как же быть? И как выкручиваются проектировщики больших энергогенерирующих объектов?

Чтобы ответить на этот вопрос, достаточно посмотреть на вводимые в строй суперсовременные «чистые» электростанции. Скажем, на стартовавшую на днях в Штатах станцию Solana - занимающую площадь в несколько квадратных километров и самую мощную на планете (280 МВт, 70 тысяч среднестатистических домохозяйств). Так вот: никакого нанотеха, никаких чудес электрохимии. Всё просто: часть собранного солнечного тепла пускают на нагрев здоровенного резервуара с расплавом соли (некоторые соли, скажем, глауберова, твёрдые в охлаждённом состоянии, переходят в жидкую форму при нагревании), и ночью возвращаемое солью тепло нагревает воду до пара и крутит турбину. И вот это решение (точнее, его масштабы) называют «поворотной точкой для солнечной энергетики»! Вот он, пик чистых технологий XXI века: солевая грелка за два миллиарда долларов!


Это и смешно, и грустно одновременно. Смешно - потому что в задаче аккумуляции энергии мы никак не уйдём от технологий столетней давности. Грустно - потому что решение этой задачи, насколько мне известно, существует давно, а честь открытия и разработки принадлежит нашему соотечественнику. Называется оно странным словом «супермаховик».

Должен предупредить сразу: описывая это творение инженерной мысли, я не могу быть абсолютно объективным. Потому что книга про супермаховик попала в мои руки, когда мне было что-то около десяти лет, и стала одним из кирпичиков, на которых и сформировалось моя любовь к технике. Поэтому ещё раз повторю, что буду рад любым доводам и аргументам. Но - к сути. В далёком 1986 году издательство «Детская литература» (!) выпустило книгу советского изобретателя Нурбея Гулиа «В поисках “энергетической капсулы”» (её копия, как раритетного издания, есть в Сети). С юмором и очень просто Гулиа описывает в ней своё становление инженера (так решили его знакомые: мол, если других талантов нет, дорога одна!) и выход на задачу, которая стала главной в его жизни. Это задача аккумуляции энергии - уже тогда, тридцать лет назад, стоявшая в полный рост. Перебрав механические, термические, электрические, химические решения, заглянув в то, что вскоре станет нанотехнологиями, Гулиа отверг их все по тем или иным причинам - и остановился на идее, известной с древности: массивном вращающемся теле, маховике.

Мы находим маховик везде, от гончарного круга и примитивных водяных насосов до транспортных средств XX века и космических гироскопов. Как аккумулятор энергии он замечателен тем, что его можно быстро разогнать («зарядить») и быстро же остановить (получив значительную мощность «на выходе»). Одна проблема: энергоёмкость его недостаточна, чтобы претендовать на роль универсальной «энергетической капсулы». Плотность запасаемой энергии необходимо увеличить хотя бы в сотню раз. Но как это сделать? Увеличим скорость - маховик разорвёт и запасённая энергия причинит страшные разрушения. Наращивать габариты тоже не всегда возможно. Пропуская многолетний, интереснейший пласт исследований и размышлений (очень рекомендую книгу, читается и сегодня совершенно современно!), собственно вклад Гулиа можно свести к следующему: он предложил делать маховик не монолитным, а навивать - например, из стального троса или ленты. Возрастает прочность, низводятся до ничтожных последствия разрыва, а энергоёмкость даже самодельных образцов превышает параметры промышленных разработок. Эту конструкцию он и назвал супермаховиком (и запатентовал один из первых вариантов ещё в 1964-м).

Прорабатывая идею, он пришёл к мысли навивать маховик из графитового волокна (не забывайте, что фуллерены тогда только получили, а о графене и речи не шло), а то и более экзотических материалов вроде азота. Но даже 20-килограммовый супермаховик из углеродных волокон, технически возможный уже тогда, тридцать лет назад, был способен запасти энергию, достаточную для передвижения легкового автомобиля на 500 километров, со средней стоимостью стокилометрового броска в 60 американских центов.


В случае с супермаховиками нет смысла возиться со сравнительными оценками - будь то запасаемая на единицу массы энергия или эксплуатационные характеристики: теоретически они превосходят все имеющиеся альтернативные решения. И области применения напрашивались сами собой. Помещённый в вакуум, на магнитной подвеске, с КПД выше 90%, выдерживающий невообразимое число циклов заряда-разряда, способный работать в широчайших диапазонах температур, супермаховик способен вращаться годами и обещал фантастические вещи: автомобиль от одной зарядки мог бы бегать тысячи километров, а то и весь срок службы, электростанция с упрятанным в фундамент многосотметровым супермаховиком запасала бы энергию, достаточную для освещения всей Земли, и так далее, и так далее. Но вот вопрос: прошло тридцать лет, почему мы же не видим супермаховиков вокруг себя?

Сказать по правде, я не знаю ответа. Технические сложности? Да, и конструкция супермаховика, и плавный отбор энергии - задачи с большой буквы, но они вроде бы решены. Время от времени слышно о мелких, узконишевых применениях. Но именно там, где на него возлагались главные надежды - в энергетике и автомобилестроении - супермаховик массового применения не нашёл. Пару лет назад американская компания Beacon Power ввела в строй небольшую супермаховичную энергоаккумулирующую станцию под Нью-Йорком, но сегодня о проекте ничего не слышно, а сама компания перебивается с хлеба на воду.

Нурбей Гулиа по-прежнему работает над совершенствованием своего детища и год назад отметился сообщением о возможности постройки графенового супермаховика (с расчётной удельной энергоёмкостью 1,2 кВт*ч/кг, то есть на порядок выше литий-ионных аккумуляторов). Но, если я правильно понимаю, коммерческого успеха он добился с другой своей разработкой (супервариатором, оригинальной механической передачей), а вот супермаховик почему-то остаётся под знаком вопроса.

P. S. Я попросил Нурбея Владимировича поучаствовать в дискуссии (хоть надежда, сами понимаете, слабая: на личном сайте его натурально одолевают поклонники).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама