THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Расчет проводится для выбора и проверки уставок релейной защиты и автоматики или проверки параметров оборудования.

Введем ряд допущений, упрощающих расчет и не вносящих существенных погрешностей:

  • 1. Линейность всех элементов схемы;
  • 2. Приближенный учёт нагрузок;
  • 3. Симметричность всех элементов за исключением мест короткого замыкания;
  • 4. Пренебрежение активными сопротивлениями, если X/R>3;
  • 5. Токи намагничивания трансформаторов не учитываются;

Погрешность расчетов при данных допущениях не превышает 2ч5%.

Расчет токов короткого замыкания упрощается при использовании схемы замещения. Расчет токов КЗ проводим в именованных единицах.

Расчетные точки короткого замыкания:

К1…К5 - на шинах ТП.

Рисунок 6.1. Схема замещения 10 кВ

Параметры системы:

где U cp - среднее напряжение, кВ;

I кз - ток короткого замыкания на шинах РП-9.

ЭДС системы:

Параметры кабельной линии:

R КЛ = r 0 l, (6.3)

X КЛ = x 0 l, (6.4)

R w3 = 0,208 1,95 = 0,4056 Ом

X w3 = 0,079 1,95 = 0,154 Ом

Параметры линий приведены в таблице 6.1

Таблица 6.1. Параметры линий

х 0 , Ом/км

АПвП-10-3Ч150

АПвП-10-3Ч150

АПвП-10-3Ч120

АПвП-10-3Ч150

АПвП-10-3Ч95

АПвП-10-3Ч150

АПвП-10-3Ч150

Расчёт токов КЗ выполняется для напряжения той стороны, к которой приводятся сопротивления схемы.

где - полное суммарное эквивалентное сопротивление от источника питания до расчётной точки КЗ, Ом.

Установившееся значение тока при двухфазном КЗ определяется по значению тока трёхфазного КЗ:

Ударный ток:

где к уд - ударный коэффициент.

Расчёт токов КЗ производим без учёта подпитки со стороны нагрузки.

Расчет токов КЗ сведен в таблицу Л1 ПРИЛОЖЕНИЕ Л

6.2 Расчет токов короткого замыкания 0,4 кВ

Расчет токов КЗ выполняется с целью проверки коммутационной аппаратуры на динамическую стойкость, чувствительность и селективность действия защит. Пример расчета приведем для ТП №1 для дома №1 по улице Железнодорожная.

Рисунок 6.2. Исходная схема для расчета токов короткого замыкания

Рисунок 6.3. Схема замещения

Найдем параметры схемы замещения.

Система С:;

Трансформатор: S н.тр =1000 кВА; U к =5,5%; ДР к =10,2 кВт.

Индуктивное сопротивление системы:

где I КЗ - ток КЗ на шинах ВН КТП.

Сопротивления трансформатора:

Сопротивления линий:

R W = 0,13·80=10,4 мОм;

X W = 0,077·80=6,16 мОм;

Сопротивления автоматических выключателей:

R QF1 =0,74 мОм; X QF1 =0,55 мОм;

R QF2 =1,8 мОм; X QF2 =0,86 мОм.

Переходные сопротивления неподвижных контактных соединений:

R к1 =0,6 мОм;

R к2 =0,75 мОм.

Сопротивление дуги:

где - падение напряжения на дуге, кВ;

Максимальный ток КЗ, А. из таблицы 7.3

где - напряженность в стволе дуги, при

Длина дуги.

где; - суммарные индуктивное и активное сопротивления прямой последовательности до точки КЗ со стороны системы.

Минимальный ток КЗ определяется по выражению:

Ударный ток определяется по выражению:

где - ударный коэффициент.

где - частота сети, .

Для точки К1:

X УК1 = 1,19+ 8,65 + 0,55 = 10,39 мОм;

R УК1 = 1,632 + 0,74+0,6 = 2,97 мОм;

Расстояние между фазами проводника а для ТП с трансформаторами на 1000 кВА составляет 60 мм, т.к. а > 50 мм, то L Д = а = 60 мм.

Найдем ударный ток:

Для точки К2:

X УК2 = 10,39 + 0,86 + 6,16 = 17,41 мОм;

R УК2 = 2,97 + 1,8 + 10,4 +0,675 = 15,845 мОм;

Расстояние между фазами проводника а составляет 2,8 мм, т.к. а < 5 мм, то L Д = 4а = 11,2 мм.

Найдем ударный ток:

Токи однофазного КЗ в сетях с напряжением до 1кВ, как правило, являются минимальными. По их величине проверяется чувствительность защитной аппаратуры.

Действующее значение периодической составляющей тока однофазного КЗ определяется по формуле:

где - полное сопротивление питающей системы, трансформатора, а также переходных контактов точки однофазного КЗ;

Полное сопротивление петли фаза-ноль от трансформатора до точки КЗ.

где, - соответственно индуктивные и активные сопротивления прямой и обратной последовательности силового трансформатора;

Соответственно индуктивное и активное сопротивления нулевой последовательности силового трансформатора.

где - удельное сопротивление петли фаза-нуль элемента;

Длина элемента.

Значение тока однофазного КЗ в точке К2:

Z П = 0,36·80=28,8 мОм;

7. Выбор и проверка коммутационной и защитной аппаратуры

7 .1 Выбор выключателей нагрузки

Выключатели выбираются по номинальному значению тока и напряжения, роду установки и условиям работы, конструктивному исполнению и отключающим способностям.

Выбор выключателей производится:

по напряжению

U ном? U сети, ном, (7.1)

Где U ном - номинальное напряжение выключателя, кВ;

U сети, ном - номинальное напряжение сети, кВ.

2) по длительному току

I ном? I раб, max , (7.2)

где I ном - номинальный ток выключателя, А

I раб, max - максимальный рабочий ток, А

3) по отключающей способности:

где i a,r - апериодическая составляющая тока КЗ, составляющая времени до момента расхождения контактов выключателя;

i a,норм - номинальный апериодический ток отключения выключателя;

Допускается выполнение условия:

где в норм - нормативное процентное содержание апериодической составляющей в токе отключения;

ф - наименьшее время от начала короткого замыкания до момента расхождения контактов;

ф = ф з, мин + t соб, (7.5)

где ф з, мин = 1,5 с - минимальное время действия защит;

t соб - собственное время отключения выключателя.

4) на электродинамическую стойкость выключатель проверяется по сквозному предельному току короткого замыкания:

где I пр, скв - действительное значение предельного сквозного тока короткого замыкания;

Начальное значение периодической составляющей тока короткого замыкания в цепи выключателя.

5) на термическую стойкость:

выключатель проверяется по тепловому импульсу:

где - предельный ток термической стойкости, равный предельному току отключения выключателя;

Нормативное время протекания тока термической стойкости.

4с при номинальном напряжении до 35 кВ

3с при номинальном напряжении свыше 110 кВ

Проектом предусматриваем комплектацию РУ 10 кВ распределительного пункта стационарными камерами одностороннего обслуживания типа КСО с вакуумными выключателями типа ВВ/TEL:

  • - номинальное напряжение 10 кВ;
  • - номинальный ток 630 А;
  • - номинальный ток отключения 12,5 кА;
  • - ток динамической стойкости 20 кА;
  • - ток термической устойчивости для промежутка времени 4 сек. 20 кА;
  • - время отключение до погасания дуги не более 0.075 сек., tа = 0.075 сек.

Выбор выключателей приведен в таблице 7.1.

Таблица 7.1. Параметры выключателей, установленных на стороне 10 кВ

Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

Причины повреждения изоляции

  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.

Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.

Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:

  • По схеме трехфазной сети 0,4 киловольта.
  • Однофазной сетью (фазой и нолем) 220 В.
  • Источником постоянного напряжения выводами положительного и отрицательного потенциала.

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

  1. Трехфазное замыкание.
  2. Двухфазное замыкание.
  3. Однофазное замыкание на землю.
  4. Однофазное замыкание на землю (Изолированная нейтраль).
  5. Двухфазное замыкание на землю.
  6. Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение i п. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения i к. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = i но. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током i у. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I у – i п m + i а t=0 ’, где i п m является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть . Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка , которые перегорали от их нагревания вследствие превышения тока определенной величины.

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют . Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде . Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.

Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

В данной статье речь пойдет о коротком замыкании в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, и т. п.

Далее рассмотрим ток трехфазного короткого замыкания при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток короткого замыкания во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн - номинальный ток в амперах, Iкз - ток короткого замыкания в амперах, Uкз - напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.


Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей принебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

На рисунке ниже приведено пояснение для данного примера.

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Здесь: U2 - напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт - полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, - имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Pкз - мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети - Rа - очень мала, и сравнительно с индуктивным сопротивлением - ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.



Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток короткого замыкания в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток короткого замыкания на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Расчет проводится для выбора и проверки уставок релейной защиты и автоматики или проверки параметров оборудования.

Введем ряд допущений, упрощающих расчет и не вносящих существенных погрешностей:

  • 1. Линейность всех элементов схемы;
  • 2. Приближенный учёт нагрузок;
  • 3. Симметричность всех элементов за исключением мест короткого замыкания;
  • 4. Пренебрежение активными сопротивлениями, если X/R>3;
  • 5. Токи намагничивания трансформаторов не учитываются;

Погрешность расчетов при данных допущениях не превышает 2ч5 %.

Расчет токов короткого замыкания упрощается при использовании схемы замещения. Расчет токов КЗ проводим в именованных единицах.

Расчетные точки короткого замыкания: К1 - на шинах НН; К2…К5 - в конце ВЛ.

Рисунок. 9.1. Схема замещения 10 кВ

Мощность трехфазного короткого замыкания:

где IкзВН - ток короткого замыкания на шинах высокого напряжения.

Параметры системы:

Где Ucp- среднее напряжение, кВ;

Мощность трёхфазного КЗ на шинах ВН подстанции, МВ·А

ЭДС системы:

Ес = Uср. (9.3)

Ес = 10,5 кВ.

Параметры силовых трансформаторов:

Активное сопротивление трансформатора, приведённое к стороне 10,5 кВ.

Реактивное сопротивление трансформатора, приведённое к стороне 10,5 кВ.

Параметры воздушной линии:

RВЛ = r0 l (9.6)

XВЛ = x0 l (9.7)

RВЛ = 0,72 11,21 = 8,07 Ом

XВЛ = 0,4 11,21 = 4,48 Ом

Параметры отходящих линий приведены в таблице 9.1.

Таблица 9.1. Параметры отходящих линий

Марка провода

ВЛ Некрасово

ВЛ Борисово

ВЛ Лукино

ВЛ Пожара

ВЛ Старина

ВЛ Прошино

Расчёт токов КЗ выполняется для напряжения той стороны, к которой приводятся сопротивления схемы.

где - полное суммарное эквивалентное сопротивление от источника питания до расчётной точки КЗ, Ом.

Установившееся значение тока при двухфазном КЗ определяется по значению тока трёхфазного КЗ:

Ударный ток:

где куд - ударный коэффициент.

Приведем пример расчета для ВЛ Лукино

Расчет токов КЗ сведен в таблицу 9.2.

Таблица 9.2. Расчет токов КЗ

I(3)кзmax, кА

I(3)кзmin, кА

ВЛ Некрасово

ВЛ Борисово

ВЛ Лукино

ВЛ Пожара

ВЛ Старина

ВЛ Прошино

Шины 10 кВ

Ток однофазного замыкания на землю определяется по формуле:

Iз(1) = 3 Uф щ? Суд L (9.13)

где Uф - напряжение фазы сети;

щ - угловая частота напряжения сети;

Суд - емкость 1 км фазы сети относительно земли, мкФ/км;

L - общая протяженность сети, км.

Но с точностью для практических расчетов, в том числе, для решения вопроса о необходимости компенсации емкостного тока замыкания на землю, расчет производим по формуле:

Где Uном - номинальное напряжение сети, кВ;

Lв - общая протяженность воздушных линий сети, км;

Lк - общая протяженность кабельных линий, км.

Определим ток однофазного замыкания на землю для отходящих линий 10 кВ. В ПУЭ оговорено: величина емкостного тока замыкания на землю для нормального режима сети. А в данном случае, нормальным режимом работы является раздельная работа силовых трансформаторов (секционные выключатели отключены).

Для отходящих линий 10 кВ:

Согласно ПУЭ п. 1.2.16 Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах: в сетях напряжением 3-20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях электропередачи, и во всех сетях напряжением 35 кВ - более 10 А. В нашем случае компенсация не требуется.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама