THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет

сервиса и экономики

Автотранспортные средства

«Система питания двигателей, работающих на дизельном и газовом топливе»

Выполнил студент 3-ого курса

Специальность 100.101

Иванов В.И.

Санкт-Петербург

Введение

1. Топливо для дизелей

2. Конструкция и работа системы питания дизеля топливом

3. Конструкция и работа системы питания дизеля воздухом

4. Система выпуска отработавших газов

5. Система питания газовых двигателей

6. Топливо для газовых двигателей

7. Конструкция систем питания газовых двигателей и их работа

Список использованной литературы

Введение

Дизели являются двигателями с внутренним смесеобразованием. В цилиндры дизеля воздух и топливо подаются раздельно и, смешиваясь в них с отработавшими газами, образуют рабочую смесь. При этом процесс смесеобразования совершается за очень малое время (порядка 0,001 с).

Газовыми называются карбюраторные двигатели, работающие на газообразном топливе - сжатых и сжиженных газах. Особенностью газовых двигателей является их способность работать также и на бензине.

1. Топливо для дизелей

Дизельное топливо имеет следующие основные марки:

Л - летнее топливо, предназначено для работы двигателя при температуре окружающего воздуха выше О °С;

3 - зимнее топливо, предназначено для работы дизеля при температуре окружающего воздуха от 0 до -30 °С;

А - арктическое, предназначено для работы дизеля при температуре окружающего воздуха ниже -30 °С.

Температура замерзания дизельного топлива должна быть на 10... 15 °С ниже температуры окружающего воздуха района эксплуатации. Чем ниже температура замерзания топлива, тем надежнее работа дизеля. Температура воспламенения дизельного топлива составляет 300... 350 °С.

Качество дизельного топлива оценивается цетановым числом, которое условно принято равным 100 ед. Цетан - быстровоспламеняющееся топливо. Для дизельных топлив цетановое число должно быть в пределах 40... 45 ед. Чем выше цетановое число дизельного топлива, тем экономичнее и мягче работает двигатель. Для повышения цетанового числа в дизельное топливо добавляют специальную присадку - изопропиленнитрат.

Система питания дизеля состоит из трех следующих систем: питания топливом, питания воздухом и выпуска отработавших газов.

2. Конструкция и работа системы питания дизеля топливом

Система питания топливом служит для очистки топлива и равномерного его распределения дозированными порциями в цилиндры двигателя.

В эту систему (рис. 1) входят топливный бак, фильтры грубой и тонкой очистки, топливоподкачивающие насосы, топливный насос высокого давления, форсунки и топливопроводы.

Топливоподкачивающий насос 7 засасывает топливо из бака 2 через фильтры грубой 4 и тонкой 8 очистки и направляет его к насосу 5 высокого давления. В соответствии с порядком работы цилиндров двигателя насос высокого давления подает топливо к форсункам 11, которые распыляют и впрыскивают топливо в цилиндры 72 двигателя.

Топливоподкачивающий насос 7 подает к насосу высокого давления топлива больше, чем необходимо для работы двигателя. Избыточное топливо отводится по топливопроводу 3 обратно в топливный бак. В бак отводится по топливопроводу 10 топливо, просочившееся из форсунок.

Рис. 1. Схема системы питания дизеля топливом:

1 - топливоприемник; 2 - бак; 3, 9, 10 - топливопроводы; 4, 8 - фильтры; 5- насос высокого давления; 6 - насос ручной подкачки; 7 - топливо-подкачивающий насос; 11 - форсунка; 12 - цилиндр

Топливный насос высокого давления служит для подачи через форсунки в цилиндры двигателя под большим давлением (20... 50 МПа) требуемых порций топлива в определенные моменты времени. Насос состоит из одинаковых по конструкции секций, число которых равно числу цилиндров двигателя. Каждая секция насоса соединена топливопроводом 13 (рис. 2) с форсункой 16.

Плунжер 6 и гильза 5 секций насоса изготовлены с высокой точностью и чистотой поверхности. Зазор между ними не превышает двух микрон. На плунжере имеются вертикальный паз 9, скошенная кромка 11 и кольцевая проточка 7. Шестерня 2, закрепленная на плунжере, находится в зацеплении с зубчатой рейкой 3, перемещением которой поворачивается плунжер в гильзе. Пружина 4 прижимает плунжер к эксцентрику 1 кулачкового вала насоса, который приводится во вращение от коленчатого вала. В гильзе имеются впускное 8 и выпускное 10 отверстия, а в верхней ее части установлен нагнетательный клапан 12. Пружина 14 прижимает иглу 15 форсунки к соплу 18 и закрывает полость 77, которая заполнена топливом. При нижнем положении плунжера 6 отверстия 8 и 10 открыты, и через них над плунжером циркулирует топливо. Нагнетательный клапан 12 в этом случае закрыт, и в полости 17 форсунки поддерживается избыточное давление топлива.

При движении плунжера вверх при вращении кулачка перекрывается выпускное отверстие 10, а затем впускное отверстие 8. Под давлением топлива открывается клапан 12, и в полости 17 форсунки создается высокое давление. При этом игла 15 форсунки преодолевает сопротивление пружины 14, поднимается вверх, и через открывшееся сопло 18 топливо впрыскивается в цилиндр двигателя.

Впрыск топлива заканчивается, когда кромка 11 открывает выпускное отверстие 10. При этом давление топлива уменьшается, игла 15 опускается вниз и закрывает сопло 18. Одновременно закрывается клапан 12, и в полости 17 форсунки топливо остается под избыточным давлением.


Рис. 2. Схема работы топливного насоса высокого давления:

1 - эксцентрик; 2 - шестерня; 3 - рейка; 4, 14 - пружины; 5 - гильза; 6 - плунжер; 7 - проточка; 8, 10 - отверстия; 9 - паз; 11 - кромка; 12 - клапан; 13 - топливопровод; 15 - игла; 16 - форсунка; 17 - полость; 18 - сопло

Поворотом плунжера 6 в гильзе 5 изменяют конец подачи топлива и его количество, впрыскиваемое за один ход плунжера. Подача топлива прекращается при совмещении вертикального паза 9 с выпускным отверстием 10, и двигатель останавливается.

С топливным насосом высокого давления соединены муфта опережения впрыска топлива, всережимный регулятор частоты вращения коленчатого вала двигателя и топливоподкачивающий насос с насосом ручной подкачки топлива.

Муфта опережения впрыска топлива служит для автоматического изменения угла опережения впрыска топлива в зависимости от частоты вращения коленчатого вала. Муфта повышает экономичность дизеля при различных режимах работы и улучшает его пуск.

Муфта устанавливается на переднем конце кулачкового вала топливного насоса высокого давления, и с помощью нее насос приводится в действие.

На взаимное положение ведущих и ведомых частей муфты оказывают влияние грузы 2 (рис. 3), находящиеся в корпусе 1. Грузы установлены на осях 3 и поджимаются пружинами 4, которые упираются в проставки 5.

При работе двигателя и увеличении частоты вращения коленчатого вала грузы под действием центробежных сил преодолевают сопротивление пружин и расходятся, поворачивая при этом кулачковый вал насоса высокого давления по ходу его вращения. В результате этого увеличивается угол а опережения впрыска топлива, и топливо поступает в цилиндры раньше. При Уменьшении частоты вращения коленчатого вала двигателя грузы сходятся под действием пружин и поворачивают кулачковый вал насоса в сторону, противоположную его вращению, что уменьшает угол а опережения впрыска топлива.

Рис. 3. Муфта опережения впрыска топлива:

1 - корпус; 2 - груз; 3 - ось; 4 - пружина; 5 - проставка; а - угол опережения впрыска топлива

Всережимный регулятор служит для автоматического поддержания постоянной частоты вращения коленчатого вала соответственно положению педали подачи топлива при различной нагрузке двигателя.

Регулятор также устанавливает минимальную частоту вращения коленчатого вала на холстом ходу и ограничивает максимальную частоту вращения. Регулятор приводится в действие от кулачкового вала топливного насоса высокого давления.

Педаль 6 (рис. 4) подачи топлива соединена с рычагом 2 управления рейкой / насоса высокого давления через растянутую пружину 3, действующую на рычаг с усилием Рпр. При работе двигателя на рычаг 2 через подпятник 7 передается сила Qгр. от вращающихся грузов, шарнирно закрепленных на валу 9, который соединен с кулачковым валом насоса высокого давления.

Если двигатель работает с частотой вращения коленчатого вала, соответствующей данному положению педали 6, то сила Qгр. грузов 8 уравновешивается усилием Рпр пружины 3.

При увеличений частоты вращения коленчатого вала грузы регулятора расходятся. Они преодолеют сопротивление пружины и переместят рейку 1. При этом подача топлива уменьшится и частота вращения не будет возрастать.

При уменьшении частоты вращения коленчатого вала грузы будут сходиться, рейка 1 усилием Рпр пружины переместится в обратном направлении и подача топлива увеличится, а частота вращения коленчатого вала возрастет до значения, заданного положением педали 6.

Рис. 4. Схема работы всережимного регулятора:

1 - рейка; 2 - рычаг; 3 - пружина; 4, 5 - упоры; 6 - педаль; 7- подпятник; 8 - груз; 9 - вал; Рпр - усилие пружины; Qгр. - сила грузов


Минимальная частота при работе на холостом ходу и максимальная частота вращения коленчатого вала двигателя ограничиваются соответственно регулируемыми упорами 5 и 4.

Топливоподкачивающий насос служит для создания требуемого давления топлива и подачи топлива в необходимом количестве к насосу высокого давления.

Насос - поршневого типа, приводится в действие от кулачкового вала насоса высокого давления.

В корпусе насоса находится поршень 1 (рис. 5), который прижат к штоку 7 пружиной 5, Шток через ролик опирается на эксцентрик # кулачкового вала. В корпусе насоса имеются впускной 4 и нагнетательный 9 клапаны.

Когда под действием пружины 5 поршень перемещается к эксцентрику, топливо из полости В вытесняется в фильтр тонкой очистки и насос высокого давления. Одновременно увеличивающаяся полость А заполняется топливом, которое поступает из топливного бака через фильтр грубой очистки и впускной клапан 4.

При движении поршня в противоположном направлении под действием эксцентрика 8 топливо из полости А через нагнетательный клапан 9 поступает в полость Б.

При неработающем двигателе топливо в насос высокого давления подкачивают поршнем 2 ручного насоса при помощи рукоятки.

Форсунки служат для впрыскивания топлива под определенным давлением и его распыления в цилиндрах двигателя.

Форсунки устанавливают и закрепляют в головке цилиндров.


Рис. 5. Схема топливоподкачивающего и ручного насосов:

1, 2 - поршни; 3, 5, 6 - пружины; 4,9- клапаны; 7- шток; 8 - эксцентрик; А, Б - полости

Корпус 4 (рис. 6) и распылитель 1 форсунки соединены гайкой 2. Внутри распылителя находится игла 9, закрывающая его сопловые отверстия. На иглу через штангу 3 Действует нажимная пружина 8, затяжку которой регулируют шайбами 7

Рис. 6. Форсунка:

1 - распылитель; 2 - гайка; 3 - штанга; 4 - корпус;

5 - кольцо; 6- фильтр; 7- шайбы; 8- пружина; 9 - игла

Топливо подается к форсунке через сетчатый фильтр 6 поступает в полость иглы 9. Под давлением топлива игла, преодолевая усилие пружины 8, перемещается вверх, открывает сопловые отверстия распылителя, и через них топливо впрыскивается в цилиндр двигателя. При этом топливо, просочившееся между иглой и распылителем, отводится из форсунки по каналам в ее корпусе.

3. Конструкция и работа системы питания дизеля воздухом

Система питания воздухом служит для забора окружающего воздуха, его очистки от пыли и распределения по цилиндрам двигателя.

Система питания воздухом (рис. 7) включает воздушный фильтр и впускной трубопровод. Она может быть с турбонаддувом или без турбонаддува.

Воздух поступает через сетку колпака 5 и трубу 4 воздухозаборника в воздушный фильтр 1. В фильтре воздух проходит через инерционную решетку 3 и резко изменяет направление движения. Сначала воздух освобождается от крупных частиц пыли, которые под действием инерции и вакуума выбрасываются через эжектор 6, установленный в выпускной трубе глушителя, в окружающий воздух. Более мелкие частицы пыли задерживаются в картонном фильтрующем элементе 2. Очищенный воздух по впускному трубопроводу подается в цилиндры 7 двигателя.

Воздушный фильтр (рис. 8) состоит из корпуса 3, крышки 1 и сменного фильтрующего элемента 2, состоящего из двух перфорированных стальных кожухов и гофрированного картона между ними. Патрубок 7 предназначен для отсоса пыли из корпуса фильтра.

Воздух поступает в фильтр через патрубок 5, очищается в нем и выходит через патрубок 6.

Наддув представляет собой подачу воздуха в цилиндры двигателя при такте впуска под давлением, создаваемым компрессором. При наддуве увеличивается количество воздуха, поступающего в цилиндры двигателя, количество сжигаемого топлива и повышается на 20...40 % мощность двигателя.

Рис. 8. Воздушный фильтр:

1 - крышка; 2 - фильтрующий элемент; 3 - корпус; 4 - диффузор; 5, 6, 7 - патрубки

В дизелях обычно применяется газотурбинный наддув (рис. 9) турбокомпрессором. При работе двигателя воздух в цилиндры 1 нагнетается под давлением центробежным компрессором 6, рабочее колесо которого приводится во вращение турбиной 5.

Рис. 9. Схема наддува дизеля воздухом:

1 – цилиндр двигателя; 2 - мембрана; 3 – пружина; 4 - клапан; 5 - турбина; 6 - компрессор

4. Система выпуска отработавших газов

Система выпуска служит для отвода газов из цилиндров двигателя и снижения шума. Одновременно система выпуска обеспечивает отсос пыли из воздушного фильтра.

Отработавшие газы из выпускных трубопроводов двигателя поступают в приемные трубы 2 и 3 глушителя (рис. 10) и далее через гибкий металлический рукав 6 в глушитель 7. Из глушителя газы через выпускную трубу 8 и эжектор 10 выбрасываются в окружающий воздух. Через патрубок 9 производится отсос пыли из воздушного фильтра в эжектор.

В системе выпуска отработавших газов устанавливается вспомогательный (моторный) тормоз-замедлитель 4.

Рис. 10. Схема системы выпуска отработавших газов дизеля:

1 -уплотнитель; 2,3,8 - трубы; 4 - тормоз-замедлитель; 5- пневмоцилиндр; 6 - рукав; 7 - глушитель; 9 - патрубок; 10 - эжектор

Рабочее колесо турбины, установленное на одном валу с рабочим колесом компрессора, приводится во вращение отработавшими газами до их поступления в глушитель. Для ограничения давления воздуха при наддуве предназначен перепускной клапан 4. При достижении требуемого давления (обычно 0,2 МПа) воздух давит на мембрану 2, клапан открывается и перепускает часть отработавших газов мимо турбины 5.

На V-образных дизелях для турбонаддува устанавливают от одного до двух турбокомпрессоров. При двух турбокомпрессорах каждый из них обслуживает свой ряд цилиндров двигателя.

5. Система питания газовых двигателей

Характеристика. Система питания газовых двигателей имеет специальное газовое оборудование. Имеется также дополнительная резервная система, обеспечивающая при необходимости работу газового двигателя на бензине.

По сравнению с карбюраторными двигателями газовые более экономичны, менее токсичны, работают без детонаций, имеют более полное сгорание топлива и меньший износ деталей, срок их службы больше в 1,5-2 раза. Однако их мощность меньше на 10... 20 %, так как в смеси с воздухом газ занимает больший объем, чем бензин. У них сложнее система питания и обслуживание в эксплуатации, требующее высокой техники безопасности.

6. Топливо для газовых двигателей

Топливом для газовых двигателей являются сжатые и сжиженные газы.

Сжатые газы - газы, которые при обычной температуре окружающего воздуха и высоком давлении (до 20 МПа) сохраняют газообразное состояние.

Сжатые газы являются природными газами. В качестве топлива для газовых двигателей обычно используется природный газ метан.

Сжиженные газы - газы, которые переходят из газообразного состояния в жидкое при нормальной температуре воздуха и небольшом давлении (до 1,6 МПа). Это нефтяные газы.

Для газовых двигателей используются сжиженные газы следующих марок: СПБТЗ - смесь пропана и бутана техническая зимняя; СПБТЛ - смесь пропана и бутана техническая летняя; БТ - бутан технический.

Газообразное топливо менее токсично, имеет более высокое октановое число (100 ед.), дает меньшее нагарообразование и не разжижает масло в картере двигателя.

7. Конструкция систем питания газовых двигателей и их работа

В систему питания двигателя, работающего на сжатом газе (рис. 11), входят баллоны 1 для сжатого газа, наполнительный 5, расходный 6 и магистральный 18 вентили, подогреватель 17 газа, манометры высокого 8 ж низкого 9 давления, редуктор 11 с фильтром 10 и дозирующим устройством 12, газопроводы высокого 3 и низкого 13 давления, карбюратор-смеситель 14 и трубка 19, соединяющая разгрузочное устройство с впускным трубопроводом двигателя.

Рис. 11. Схема системы питания двигателя, работающего на сжатом газе:

1 - баллон; 2 - тройник; 3, 13 - газопроводы; 4 - крестовина; 5, 6, 18 - вентили; 7 – бак; 8, 9 - манометры; 10 - газовый фильтр; Л - редуктор; 12 - Дозирующее устройство; 14 - карбюратор-смеситель; 15 - топливопровод; 16 - топливный насос; 17- подогреватель; 19 - трубка


При работе двигателя вентили 6 и 18 открыты. Сжатый газ из баллонов поступает в подогреватель 17, обогреваемый отработавшими газами, нагревается и через фильтр 10 проходит в двухступенчатый газовый редуктор 11. В редукторе давление газа снижается до 0,9..Л,15 МПа. Из редуктора через дозирующее устройство 12 газ проходит в карбюратор-смеситель 14, где и образуется горючая смесь (газовоздушная). Смесь под действием вакуума поступает в цилиндры двигателя. Процесс сгорания смеси и отвода отработавших газов, как в карбюраторных двигателях.

Редуктор 11, кроме уменьшения давления газа, изменяет его количество в зависимости от режима работы двигателя. Он быстро выключает подачу газа при прекращении работы двигателя.

Кроме основной, имеется резервная система питания, обеспечивающая работу двигателя на бензине в необходимых случаях (неисправности системы, израсходован весь газ в баллонах и др.). При этом длительная работа двигателя на бензине не рекомендуется, так как в резервной системе питания отсутствует воздушный фильтр, что может привести к повышенному изнашиванию двигателя.

В резервную систему питания входят топливный бак 7, топливный фильтр, топливный насос 16 и топливопроводы 15.

Рис. 12. Схема системы питания двигателя, работающего на сжиженном газе:

1 - топливный фильтр; 2 - топливный насос; 3 - карбюратор; 4 - смеситель; 5- испаритель; 6 - газовый фильтр; 7- дозирующее устройство; 8- редуктор; 9, 10 - манометры; 11, 13 - вентили; 12 - баллон; 14 - двигатель; 15 - бак


Система питания двигателя, работающего на сжиженном газе, показана на рис. 12. Сжиженный газ под давлением из баллона 12 поступает через расходный 13 и магистральный 11 вентили в испаритель 5. В испарителе газ подогревается горячей жидкостью системы охлаждения двигателя и переходит в газообразное состояние. Затем газ очищается в фильтре 6, поступает в двухступенчатый редуктор 8, где давление газа снижается до атмосферного. Из редуктора газ через дозирующее устройство 7 проходит в смеситель 4, который готовит горючую смесь в соответствии с режимом работы двигателя.

Газовый баллон имеет предохранительный клапан, открывающийся при давлении 1,68 МПа, наполнительный вентиль и датчик уровня сжиженного газа. Баллон заполняется сжиженным газом только на 90 % объема. Это необходимо для возможности расширения газа при нагреве.

Кроме основной системы питания, двигатель, работающий на сжиженном газе, имеет резервную систему питания для кратковременной работы на бензине. В резервную систему входят топливный бак 15, топливный фильтр 1, топливный насос 2 и карбюратор 3.

Список использованной литературы

1. Сарбаев В.И. Техническое обслуживание и ремонт автомобилей. − Ростов н/Д: «Феникс», 2004.

2. Вахламов В.К. Техника автомобильного транспорта. − М.: «Академия», 2004.

3. Барашков И.В. Бригадная организация технического обслуживания и ремонта автомобилей. – М.: Транспорт, 1988г.

Ленуар построил мотор работающий на смеси воздуха и газа а бензиновый двигатель появился лишь два десятилетия спустя и газ как возможный вариант моторного топлива был забыт на долгое время. Использование газа вместо бензина не является вынужденной мерой наоборот газовое топливо сгорает полнее поэтому концентрация окиси углерода в выхлопе газового двигателя в разы меньше. В выхлопе газового двигателя в отличие от бензинового нет ни сернистого газа ни соединений свинца. При сгорании газа образуется меньше твердых частиц и золы...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Управление образования Могилёвского облисполкома

Учреждение образования <<Государственный профессиональный лицей №9 А.П. Старовойтова г. Могилёва>>

Письменная экзаменационная работа

Тема: Система питания газобаллонного автомобиля

ЗиЛ-431610

Выпускника группы №28

Сорокина Владислава Николаевича

Специальности:

3-361151 Техническая эксплуатация

Подъёмно-транспортных средств

3-370152 Эксплуатация и ремонт

Автомобилей

3-700251 Производство строительно-

Монтажных и ремонтных работ

Квалификации:

3-361151 Машинист крана

Автомобильного

3-370152-51 Водитель автомобиля

3-700251-56 Стропальщик

Консультант:

Киреенко Л.Б.

Могилёв

2015

Введение

Назначение, устройство и принцип действия системы питания газобаллонного автомобиля Зил-431610

Неисправности и техническое обслуживание системы питания газобаллонного автомобиля

Охрана труда перед началом работы крана автомобильного

Введение

В 30-е годы 19 века англичанин Барнетт получил патент на газовый двигатель, а уже в 1860 году француз Э. Ленуар построил мотор работающий на смеси воздуха и газа, а бензиновый двигатель появился лишь два десятилетия спустя и газ, как возможный вариант моторного топлива был забыт на долгое время. Лишь спустя 100 лет были сделаны попытки его использования в газогенераторных двигателях – газ вырабатывался в топке, а оттуда подавался в двигатель.

Использование газа вместо бензина не является вынужденной мерой, наоборот, газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в разы меньше. В выхлопе газового двигателя, в отличие от бензинового, нет ни сернистого газа, ни соединений свинца. Газовые и бензиновые двигатели выбрасывают в атмосферу одинаковое количество углеводородов, но опасность для человека представляют лишь продукты их окисления.

Бензиновый двигатель выбрасывает легко окисляющиеся вещества – этил и этилен, а двигатель работающий на газе – метан, наиболее устойчивый к окислению среди углеводородов и, следовательно, менее опасный. В двигателе внутреннего сгорания газообразная смесь воздуха и топлива всасывается в цилиндр двигателя, сжимается поршнем, воспламеняется искрой, давит на поршень, двигает шатунный механизм и выбрасывается их цилиндра. Здесь важную роль играет детонация (распространение пламени в веществе со скоростью, превышающей скорость звука в данном веществе).

Антидетонационная способность топлива определяется его октановым числом – чем оно выше, тем лучше топливо. Газ имеет октановое число равное 105, что недостижимо для доступных марок бензина. При сгорании газа образуется меньше твердых частиц и золы, вызывающих повышенный износ цилиндров и поршней двигателя. Масляная пленка, несмываемая жидким топливом, дольше держится на металлических поверхностях и газ, практически не вызывает коррозии металла.

Первое поколение газобаллонного оборудования автомобиля (ГБО)

Принцип работы первого поколения основан на регулировании давления газа поступающего из редуктора и последующей дозировке количества подаваемого газа механически. Эти системы устанавливали на два типа автомобилей: карбюраторные, инжекторные (моновпрысковые). В первом поколении ГБО используются как вакуумные, так и электронные газовые редукторы (без лямбда-зонда). Это — традиционные устройства со смесителем газа.

В комплект газобаллонного оборудования первого поколения входили как вакуумные, так и электрические редукторы с электронным управлением.

Второе поколение ГБО

Системы второго поколения имеет в своем составе электрический редуктор и электронное дозирующее устройство, которое опирается на сигналы датчика содержания кислорода (лямбда-зонд) в выпускном коллекторе двигателя, датчика положения дроссельной заслонки (TPS — Throttle Position Sensor) и датчика частоты вращения коленвала (RPM). Газовый электронный блок управления (лямбда-контроллер) получает сигналы от указанных выше датчиков и поддерживает необходимый (стехиометрический) состав газо-воздушной смеси как на установившихся, так и на переходных режимах работы двигателя.

Третье поколение ГБО

В системах газобаллонного оборудования третьего поколения электронный блок вместе с дозатором распределителем обеспечивает распределенный синхронный впрыск газа во впускной коллектор с помощью механических форсунок. Электронный блок опирается на сигналы датчика положения дроссельной заслонки (TPS), датчика содержания кислорода в выпускном коллекторе двигателя (лямбда-зонд), датчик частоты вращения коленвала (RPM), датчика абсолютного давления (MAP) и регулирует режим подачи газа.

Индивидуальная подача газа в каждый конкретный цилиндр осуществляется дозирующим устройством — газовым инжектором. Механические форсунки открываются за счет избыточного давления в магистрали подачи газа. Электронный блок ГБО третьего поколения создает собственные топливные карты и из-за особенностей конструкции шагового дозатора недостаточно оперативно корректирует состав газовоздушной смеси.

Четвёртое поколение ГБО

Данная система, с помощью электромагнитных форсунок, обеспечивает распределенный последовательный или параллельного впрыска газа. Принцип действия этой системы отличается от предыдущих поколений.

Работа электромагнитных газовых форсунок корректируется при помощи газового блока управления (аналог штатного автомобильного электронного блока управления (ЭБУ) мотором). Газовый блок управления считывает сигналы (сгенерированные штатным ЭБУ) идущие на бензиновые форсунки и на их основе производит расчет сигналов для управления газовыми форсунками. Управление впрыском газа фактически осуществляется на основе сигналов штатного ЭБУ.Газ из редуктора подается к газовым форсункам и впрыскивается непосредственно на впускные клапана двигателя.

Пятое поколение ГБО

Отличительной особенностью пятого поколения автомобильного газобаллонного оборудования является то, что газ подается в цилиндры двигателя в жидком состоянии. Для этого система дополнительно оснащается газовым насосом, который заставляет циркулировать жидкий газ из баллона через систему топливных магистралей в рампу газовых форсунок и таким образом создает необходимое постоянное давление перед форсунками. Через клапан обратного давления газ возвращается в баллон.

Газовые электромагнитные форсунки подают газ в жидком состоянии. Также в таких системах возможна подача жидкого газа через бензиновые форсунки.

Газовый блок управления использует бензиновые топливные карты, заложенные в штатный ЭБУ, и вносит лишь необходимые поправки для адаптации к газу.

Назначение, устройство и принцип действия системы питания газобаллонного автомобиля

ЗиЛ-431610

Назначение:

Система питания газобаллонного автомобиля служит для хранения запаса топлива, очистки топлива и воздуха, приготовления горючей смеси, подачи ее в цилиндры двигателя и выпуска отработавших газов

Устройство:

(Рис. 1)

Схема топливных систем для работы на газе и бензине автомобиля ЗИЛ-431610

1 - газовый смеситель; 2 - шланг от редуктора низкого давления к смесителю; 3 - шланг от экономайзера редуктора к смесительной камере карбюратора; 4 - редуктор низкого давления; 5 - шланг для передачи разрежения в полость разгрузочного устройства; 6 - трубка от первой ступени редуктора к пусковому клапану; 7 - шланг от пускового клапана к газовому смесителю; 8 - пусковой клапан; 9 - шланг от электромагнитного клапана к фильтру редуктора низкого давления; 10 - трубка для аварийного выпуска газа; 11 - трубка газа от предохранительного клапана редуктора высокого давления; 12 - редуктор высокого давления; 13 - электромагнитный клапан с газовым фильтром; 14 - трубка от редуктора высокого давления к электромагнитному клапану; 15 - трубопровод от крестовины к редуктору высокого давления; 16 - переходный штуцер; 17 - газовый баллон; 18 - передняя трубка между баллонами сжатого газа; 19 - наполнительный вентиль; 20 - расходный вентиль с фильтром; 21 - крестовина наполнительного вентиля; 22 - расходный вентиль со штуцером; 23 - трубка от передней группы баллонов к крестовине; 24 - манометр высокого давления; 25 - трубка от передней группы баллонов к задней; 26 - тройник баллона; 27 - средняя трубка между баллонами; 28 - задняя трубка между баллонами; 29 - угольник баллона; 30 - трубка к фильтру грубой очистки топлива; 31 - топливный бак; 32 - фильтр грубой очистки топлива; 33 - трубка к насосу; 34 - карбюратор; 35 - трубка от фильтра тонкой очистки топлива к карбюратору; 36 - фильтр тонкой очистки топлива с электромагнитным клапаном; 37 - трубка от насоса к фильтру тонкой очистки топлива; 38 - топливный насос

Принцип действия:

Сжиженный газ из баллона через расходный вентиль или по газопроводу поступает в фильтр, а за тем по газопроводу в редуктор. Редуктор совмещён с испарителем, который, используя тепло жидкости из системы охлаждения двигателя преобразует сжиженный газ в газообразное состояние. Из редуктора газ по шлангу поступает в смеситель, имеющий две форсунки, помещённых в диффузорах карбюратора. Газ, смешиваясь с воздухом, образует горючую смесь.

Неисправности и техническое обслуживание системы газобаллонного автомобиля

ЗиЛ - 431610

Неисправности системы питания газобаллонного автомобиля

Неисправность

Устранение

Не герметичность соединений газовой установки

Заменить изношенные детали, поджать вентили

Утечки газа через клапан

Зажать клапан или заменить

Внешняя не герметичность

Зажать все соединения

Нарушена герметичность электромагнитного бензинового клапана

Устранить не герметичность бензинового клапана.

Износ резинотехнических деталей редуктора

Разобрать редуктор, удалить смолистые отложения. Отремонтировать или заменить вышедшие из строя детали.

Провалы в работе двигателя при резком открывании дроссельных заслонок

Уменьшение проходных сечений в тройнике-дозаторе или автономно работающем дозаторе. Отрегулировать тройник-дозатор на всех режимах работы двигателя с помощью винтов тройника-дозатора.

Падение мощности двигателя. При движении автомобиль не развивает скорость и дергается

Засорение электромагнитного газового клапана-фильтра. Недостаточно открыт клапан второй ступени редуктора. Не отрегулированы винты дозатора. Обмерзание редуктора вследствие перекрытия проходного отверстия из-за недостаточного обогрева редуктора теплоносителем. Закрыть расходный вентиль на баллоне. Отвернуть рожковым ключом накидную гайку магистрального газопровода. Отвернуть стяжной болт или винты и снять колпак фильтра, стараясь не повредить уплотнительную прокладку. Снять фильтрующий элемент, разобрать его, промыть в растворителе, продуть и при необходимости заменить. Сборку осуществить в обратном порядке. Повернуть винт-регулятор на редукторе против часовой стрелки для увеличения подачи газа. Отвернуть на пол-оборота винты тройника-дозатора или отрегулировать специально установленный перед смесителем автономный дозатор газа. Долить охлаждающую жидкость в радиатор. Прогреть двигатель на бензине.

Затруднен пуск двигателя или его неустойчивая работа на холостом ходу

Самопроизвольное изменение положения регулировочного винта холостого хода на редукторе. Отрегулировать винтом-регулятором на редукторе (давление второй ступени) холостой ход. Повернуть винт против часовой стрелки для увеличения подачи газа и, следовательно, повышения частоты вращения коленчатого вала и наоборот.

Тяжелый запуск. Двигатель глохнет на холостом ходу. Перерасход газа

Недостаточное разрежение в вакуумном устройстве. Воздушная заслонка карбюратора не открывается полностью. Проверить исправность присоединения вакуумного шланга. Отсоединить от коллектора двигателя вакуумный шланг и всосать воздух. Если разрежение не ощущается, значит, диафрагма разгрузочного устройства редуктора пропускает воздух. Снять крышку редуктора второй ступени и разгрузочное устройство. Устранить негерметичность путем приклеивания к диафрагме куска капроновой ткани или заменить диафрагму разгрузочного устройства. Отрегулировать привод воздушной заслонки.

Появление запаха газа в салоне, багажном отделении, в подкапотном пространстве

Нарушение герметичности газобалонной установки в местах соединения газопроводов, клапана второй ступени редуктора, блока арматуры. Значительные утечки газа обнаруживаются визуально (по обмерзшим местам утечки), незначительные – омыливанием мыльной эмульсией в местах соединений. Включить зажигание. Внимательно осмотреть трубопроводы и приборы газобалонной установки. Выключить зажигание. Закрыть расходный вентиль баллона и подтянуть накидные гайки или заменить пропускающий ниппель.

Техническое обслуживание системы питания газобаллонного автомобиля

Периодичность и объем технического обслуживания

Периодичность технического обслуживания газобаллонных автомобилей соответствует периодичности для базовых автомобилей, двигатели которых работают на бензине.

Важнейшим мероприятием в техническом обслуживании газобаллонных двигателей является обязательность постоянной проверки внешним осмотром герметичности газобаллонной установки, крепления баллонов и работы двигателя на газовом топливе. Необходимо выполнять все работы по контролю состояния крепления газового оборудования омедненным инструментом— во избежание искрообразования.

Въезд, передвижение своим ходом по постам и выезд автомобиля с линии технического обслуживания должны производиться при работе двигателя только на бензине.

Особое внимание требуется при выполнении работ по ТО-2, проводимых через каждые шесть месяцев. При этом сжиженный углеводородный газ Из баллонов должен быть удален, а. баллоны для сжатого природного газа продегазированы инертным газом

или азотом.

Для надежной эксплуатации газобаллонных автомобилей в зимнее время необходимо, в частности, выполнить следующее:

разобрать, очистить, промыть, после сборки и регулировки проверить на герметичность все приборы газового оборудования (редукторы высокого и низкого давления; карбюратор-смеситель, переходник-смеситель, смеситель, испаритель, электромагнитные клапана, вентили, не выворачивая их из корпусов баллонов), фильтрующие элементы;

проверить состояние газовых баллонов и их арматуры;

проверить манометры высокого давления, опломбировать их и поставить клеймо со сроком следующей проверки.

Проверка герметичности газовой системы питания

Перед началом проверки системы для сжиженного углеводородного газа на герметичность необходимо осмотреть всю газовую систему автомобиля, обратив особое внимание на соединения шлангов и трубок со штуцерами, легкость открытия и закрытия расходных вентилей на баллоне. Следует также проверить комплектность газового оборудования на автомобиле. Перед испытаниями под давлением газовой системы и наполнением газовых баллонов сжатым воздухом вентили на баллонах должны быть закрыты.

вывернуть заглушку наполнительного вентиля и подсоединить к штуцеру компрессора, убедившись в плотности соединения;

включить компрессор и наполнить каждый газовый баллон воздухом до давления 1,6 МПа. Во время наполнения баллона сжатым воздухом находиться со стороны расположения вентилей, а также в кабине автомобиля запрещается. Работник, проверяющий газовую систему питания в момент наполнения баллона должен находиться у пульта включения компрессора. Отключить компрессор при давлений воздуха в баллоне 1,6 МПа. Если предохранительный клапан срабатывает при давлении воздуха ниже 1,6 МПа, то следует заменить клапан;

медленным открытием расходного вентиля баллона надо наполнить газовую систему питания автомобиля сжатым воздухом при закрытом электромагнитном клапане;

смочить места соединения трубопроводов от газового баллона (баллонов) до электромагнитного клапана мыльной пеной. При обнаружении утечки воздуха (образование пузырьков, шипение и т. д.) в соединениях нужно закрыть расходный вентиль и затянуть гайки, трубки и шланги в местах, где была обнаружена течь воздуха.

Вместо мыльной пены могут быть использованы электронные течеискатели. В случае, если подтягиванием гайки течь воздуха не устраняется, следует заменить ниппель и снова проверить соединения на герметичность;

включить зажигание и проверить герметичность соединений на участке от электромагнитного клапана до редуктора. При больших утечках и понижении давления воздуха в газовом баллоне необходимо включить компрессор, увеличить давление воздуха до 1,6 МПа. При разрывах и вспучивании шлангов газовой системы их следует заменить и испытать;

проверить работу электромагнитного датчика давления в первой ступени газового редуктора при включении зажигания. Показания стрелки на указателе давления газа в первой ступени газового редуктора должно быть в пределах 0,12 ... 3,5 МПа.

Герметичность газобаллонной установки для сжатого природного газа следует проверять сжатым воздухом или инертным газом под давлением 20 МПа. Проверка производится при постоянном ступенчатом повышении давления 2,5; 5; 10 и 20 МПа. При необходимости подтягивания соединений давление в баллонах должно быть снижено до атмосферного. Запрещается подтягивать гайки трубопроводов, находящихся под высоким давлением.

Если после подтягивания соединений герметичность не восстанавливается, следует заменить трубопровод или ниппельное соединение, отрезав кольцо с небольшим куском трубки.

При наличии повреждений (ступеньки, задиры) на конической уплотняющей поверхности баллонных переходников или штуцеров штуцера необходимо заменить.

Проверив герметичность соединений трубопроводов до редуктора высокого давления, следует включить зажигание, установить переключатель вида топлива в положение «Газ» и приступить к проверке герметичности соединений и узлов на участке от редуктора высокого давления до карбюратора-смесителя. Давление в баллонах целесообразно снизить до 1,6 ... 2 МПа. Давление после редуктора высокого давления должно быть в пределах 0,9 ... 1,1 МПа. Проверить указанное давление можно при помощи манометра (МТ-1) со шкалой 2,5 МПа, установленного вместо датчика сигнализатора. Давление в редукторе при его исправности должно устанавливаться автоматически без регулировки.

Проверка и испытание системы питания после разборки, промывки, сборки и регулировки

После опрессовки газовой системы питания необходимо перевести автомобиль для работы на бензине, пустить двигатель на этом виде топлива и отрегулировать частоту вращения коленчатого вала в режиме холостого хода.

Система резервного питания не имеет ограничителя, поэтому при пуске, прогревании, проверке и регулировке следует особенно внимательно следить за работой двигателя и не увеличивать частоту вращения коленчатого вала выше 2000 ... 2500 мин 1.

Дозаправив автомобиль сжиженным углеводородным газом, необходимо провести все мероприятия по переводу двигателя для работы на сжиженном углеводородом газе. После проверки на. герметичность газовой системы питания внешним осмотром пускается двигатель и проводится регулировка частоты вращения коленчатого вала в режиме холостого хода в пределах 500 ... 600 мин"1, а также на переходных режимах.

В случае утечки газа через соединения или детали приборов системы необходимо немедленно прекратить подачу газа, остановить двигатель и устранить неисправности.

Устройство тормозного механизма крана автомобильного

Тормоза служат для уменьшения скорости движения рабочих механизмов крана вплоть до их полной остановки и длительного Удерживания груза, стрелы и поворотной части крана в заданном положении.

В трансмиссиях автомобильных кранов с механическим приводом тормоза устанавливают в колесах шасси и ведущих валах механизмов, а также на коробке передач (КС-256Ш) или коробке отбора мощности (КС-3561). В одновальных лебедках (К-64) тормоза устанавливают на барабанах лебедки.

В трансмиссиях автомобильных кранов с многомоторным, индивидуалъным электро- или гидроприводом тормоза устанавливают на валах двигателей, приводящих в движение механизм, или на ведущем (входном) валу редуктора с противоположной от двигателя стороны. Размещение тормозов на ведущих валах механизмов позволяет уменьшить их габариты и усилия для их включения.

От исправности тормозов зависят четкость, безопасность и безотказность работы крана. Надежность работы тормозов зависит от своевременного и правильного их регулирования. Для обеспечения надежной работы тормозов их нужно регулярно ремонтировать, очищать от пыли и грязи, не допускать замасливания обкладок. Правила регулирования каждого тормоза приводятся в инструкции по эксплуатации крана.

По способу действия различают нормальнозакрытые (замкнутые) и. нормальнооткрытые (разомкнутые) тормоза.

Закрытый тормоз крана постоянно включен (затянут) усилием пружины. Когда его выключают (размыкают), механизм начинает работать. Открытый тормоз постоянно выключен (разомкнут). Когда его включают (затягивают), механизм останавливается.

Открытый тормоз более чувствителен в управлении и позволяет плавно регулировать скорости.

(Рис. 2)

Рис. 2. Ленточные тормоза:
а — простой, б — дифференциальный, в — суммирующий; 1 и 4 — набегающий и сбегающий концы, 2 — фрикционная лента, 3 — тормозной шкив, 5 — рычаг

По принципу действия тормоза относятся к фрикционным механизмам и аналогичны по принципу работы фрикционным муфтам.

По способу управления тормоза, как и фрикционные муфты, делятся на управляемые и автоматически действующие.

Ленточный тормоз (рис.2) состоит из фрикционной ленты, тормозного шкива и системы рычагов. Фрикционная лента стальная, на нее наклепана фрикционная накладка в виде сплошной ленты или отдельных секций. Если смотреть на вращающийся шкив, то один конец ленты как бы набегает на шкив, а другой сбегает с него, поэтому конец называется набегающим, а конец — сбегающим.

По принципу закрепления набегающего конца ленты ленточные тормоза разделяются на простые, дифференциальные и суммирующие.

У простого тормоза (рис. 2, а) набегающий конец неподвижен, сбегающий конец крепится к рычагу. Такой тормоз одностороннего действия, его применяют там, где тормозной шкив механизма должен вращаться только в одну сторону.

У дифференциального тормоза (рис. 2, б) набегающий и сбегающий концы фрикционной ленты закреплены на рычаге с разных сторон точки опоры (оси) А. Набегающий конец увлекается силой трения, действующей между шкивом и лентой и стремится повернуть рычаг вокруг оси в ту же сторону, что и включающее усилие Р. При этом создается дополнительное натяжение сбегающего конца ленты. Поэтому в дифференциальных тормозах требуется значительно меньшее усилие включения, чем в простых. Длина плеч рычага, к которым крепятся набегающий и сбегающий концы ленты, специально рассчитывается. При неудачном выборе плеч тормоз может оказаться самотормозящимся. Дифференциальный тормоз применяют там, где нужно создать большой тормозной момент при небольшом усилии на рычаге управления. Дифференциальный тормоз так же, как и простой, одностороннего действия.

У суммирующего тормоза (рис. 2, в) набегающий и сбегающий концы фрикционной ленты крепят на рычаге также с двух сторон оси А, но так, что набегающий конец ленты, увлекаемый силой трения, стремится повернуть рычаг вокруг оси в сторону, противоположную повороту рычага, под действием включающего усилия Р. Если в таком тормозе концы закрепить на одинаковом расстоянии от опоры Л, то момент, возникающий от натяжения ленты, не изменяется при любом направлении вращения тормозного шкива. Таким образом, суммирующий тормоз двустороннего действия. Его используют при необходимости остановить механизм независимо от направления его вращения. При изменении направления вращения тормозного шкива набегающий конец сбегает со шкива, а сбегающий — набегает на шкив.

Неисправности и техническое обслуживание тормозного механизма крана автомобильного

Неисправности тормозного механизма

Причина неисправности

Способ устранения

Замасливание фрикционных лент тормозных механизмов

Промойте и просушите колодки

Полный износ фрикционных тормозных лент

Замените тормозные лент

Излом или ослабление стяжной пружины колодок тормозного механизма заднего колеса

Заменить пружину

Самопроизвольное опускание груза

Отрегулировать тормоза

Техническое обслуживание тормозного механизма

РЕГУЛИРОВКА ТОРМОЗА МЕХАНИЗМА ПОВОРОТА (для КС-45717, КС-45719)

(Рис. 3)

Перед регулированием тормоза механизма поворота необходимо проверить износ фрикционных накладок 1, при уменьшении толщины накладок до 3мм, а также при износе до головок заклепок накладки следует заменить.

Регулирование тормоза производится в следующей последовательности:

ослабить контргайку 4;

  • установить гайкой 3 длину пружины 2 равную 88±1 мм;
  • законтрить гайку 3 гайкой 4;
  • ослабить гайки 6;
  • болты 5 ввернуть до упора и отвернуть на 2-3 оборота;
  • затянуть гайки 6.

По мере износа фрикционных накладок 1, длина пружины 2 будет увеличиваться. Проверять работу тормоза следует ежедневно, регулирование производить при каждом техническом обслуживании крана.

РЕГУЛИРОВКА ЛЕНТОЧНЫХ ТОРМОЗОВ

(Рис. 4)

Регулировку тормоза лебедки КС-45717 производите в следующей последовательности:

  • гайками 1 установите длину Н пружины 3, равную 71-73мм;
  • ввернуть болт 10 до упора тормозной ленты 8 в шкив тормоза 7, затем отвернуть на 0,5-1 оборот и законтрить;
  • перемещением размыкателя 2 и регулировочного винта 5 установить расстояние h между головкой болта 5 и коромыслом 6, равным 11-13 мм.

(Рис. 5)

Регулировку тормоза лебедки КС-45719 производите в следующей последовательности:

убедитесь в том, что фрикционная накладка не изношена до предельных размеров (при предельном износе 1/2 от первоначальной толщины накладки в средней части и 1/3 - в крайних частях, а также при износе до головок заклепок - заменить накладку);

  • установите гайками 1 длину Н пружины 3, равную 94-95 мм для одного тормоза, 102-103 для спаренного тормоза;
  • ввернуть болты 10 до упора тормозной ленты 8 в шкив тормоза 7, затем отвернуть на 0,5-1 оборот и законтрить;
  • максимально выверните болт 5 из рычага 6 и законтрите его;
  • ослабив гайки 4, установите расстояние h равное 10-10,5 мм. Затяните гайки 4.

После регулировки проверить эффективность тормоза удерживанием максимального груза, поднятого на высоту 100-200 мм, при открытом вентиле, соединяющем магистрали гидромотора механизма подъема.

(Рис. 6)

Регулировку тормоза лебедки КС-35715 производите в следующей последовательности:

убедитесь в том, что фрикционная накладка не изношена до предельных размеров (при предельном износе 1/2 от первоначальной толщины накладки в средней части и 1/3 - в крайних частях, а также при износе до головок заклепок - заменить накладку);

  • гайками 3 установите длину Н пружины 4, равную 75-85мм;
  • ввернуть болт 10 до упора тормозной ленты 8 в шкив тормоза, затем отвернуть на 0,5-1 оборот и законтрить;
  • установить ход штока h размыкателя 4-8 мм, ввертывая или вывертывая вилку и шток размыкателя.

После регулировки проверить эффективность тормоза удерживанием максимального груза, поднятого на высоту 100-200 мм, при открытом вентиле, соединяющем магистрали гидромотора механизма подъема.

РЕГУЛИРОВКА ТОРМОЗНОГО КЛАПАНА

(Рис. 7)

Регулировка тормозных клапанов производится при максимальных нагрузках для данного вылета стрелы при минимальных оборотах двигателя.

Регулировка тормозного клапана механизма изменения вылета стрелы (гидроцилиндра подъема стрелы).

Выдвинуть стрелу на максимальную длину, поднять максимальный груз для наибольшего вылета стрелы. Отвернуть колпак 1 тормозного клапана, ослабить контргайку 3. При опускании стрелы добиться регулировочным винтом 2 плавного (без рывков) опускания стрелы. Проверить настройку клапана на всем диапазоне вылетов. Затянуть контргайку 3, навернуть колпак 1, при необходимости заменить уплотнительные кольца.

Регулировка тормозного клапана механизма выдвижения стрелы (гидроцилиндра телескопирования).

Выдвинуть стрелу на максимальную длину, поднять максимальный груз для наибольшего вылета стрелы, с которым разрешается телескопирование. Отвернуть колпак 1 тормозного клапана, ослабить контргайку 3. При втягивании секций стрелы добиться регулировочным винтом 2 плавного (без рывков) втягивания секций стрелы. Затянуть контргайку 3, навернуть колпак 1, при необходимости заменить уплотнительные кольца.

Регулировка тормозного клапана механизма подъема.

Поднять максимальный груз для данного вылета стрелы. Отвернуть колпак 1 тормозного клапана, ослабить контргайку 3. При опускании груза добиться регулировочным винтом 2 плавного (без рывков) вращения барабана лебедки. Затянуть контргайку 3, навернуть колпак

Охрана труда

перед началом работы крана автомобильного

1. Организация рабочего места машиниста автомобильного крана должна обеспечивать безопасность выполнения работ.

2. Рабочее место машиниста не должно загромождаться посторонними предметами. Рычаги и место управления необходимо содержать в чистоте. Запрещается складировать на полу кабины инструмент, спецодежду, обтирочные материалы и другие предметы.

3. Площадка, предназначенная для производства погрузочно-разгрузочных работ, должна быть освобождена от посторонних предметов, спланирована, подготовлена с учетом категории и характера грунта и иметь достаточно твердую поверхность, обеспечивающую устойчивость автомобильного крана, складируемых материалов и транспортных средств.

4. Места производства погрузочно-разгрузочных работ должны иметь достаточное естественное и искусственное освещение.

5. Для предупреждения о возможной опасности в местах производства погрузочно-разгрузочных работ должны быть установлены (вывешены) знаки безопасности.

6. Перед началом работы машинист обязан:

привести в порядок и надеть спецодежду;

проверить наличие удостоверений на право управления транспортным средством соответствующей категории и краном данного типа;

ознакомиться с записями в вахтенном журнале о техническом состоянии крана;

проверить техническое состояние автомобильного крана;

проверить наличие защитных средств от поражения электрическим током (диэлектрических перчаток, галош, резиновых ковриков);

проверить наличие средств пожаротушения, медицинской аптечки, термоса с питьевой водой;

убедиться в наличии набора исправного ручного инструмента и необходимых приспособлений;

ознакомиться с условиями производства и характером работ и получить разрешение на производство работ у лица, ответственного за безопасное производство работ кранами;

получить наряд-допуск, определяющий безопасные условия работы (при выполнении работ автомобильным краном на расстоянии ближе 30м от подъемной выдвижной части крана в любом ее положений, а также от груза до вертикальной плоскости, образуемой проекцией на землю ближайшего провода воздушной линии электропередачи находящейся под напряжением 42 В и более);

проверить у стропальщика наличие удостоверения на право выполнения строповочных работ;

совместно со стропальщиком произвести внешний осмотр грузозахватных приспособлений. Грузозахватные приспособления должны иметь клеймо или прочно прикрепленную металлическую бирку с указанием номера, грузоподъемности и даты испытания. При обнаружении дефектов или истечении срока очередного испытания грузозахватные приспособления следует браковать.

7. При проверке технического состояния автомобильного крана машинист должен произвести его тщательный осмотр, при этом особое внимание должно быть уделено:

осмотру механизмов крана, их креплению;

осмотру тормозов;

проверке надежности действия всех механизмов управления;

осмотру крюка (на крюке не должно быть трещин, износ зева крюка не должен превышать 10% сечения) и его креплению в обойме, при этом необходимо убедиться в свободном вращении крана вокруг оси и качении в траверсе обоймы;

проверке в доступных местах состояния канатов и их крепления на барабане, стреле, а также укладку канатов в ручьях блоков и барабанов. При уменьшении диаметра каната в результате поверхностного износа или коррозии на 7% или более по сравнению с номинальным диаметром, повреждения сердечника, износа, обмятия, разрыва и т.п. (на З % от номинального диаметра у некрутящихся канатов и на 10% у остальных канатов); при уменьшении первоначального диаметра наружных проволок в результате износа или коррозии на 40 % и более; при обнаружении в канате одной или нескольких оборванных прядей каната; при обнаружении корзино-образной деформации, выдавливания сердечника, выдавливания или расслоения прядей, местного увеличения диаметра каната, местного уменьшения диаметра каната, раздавленных участков, перекручиваний, заломов, перегибов, повреждений в результате температурного воздействия или электрического дугового разряда канат к дальнейшей работе не допускается;

проверке наличия и состояния приборов и устройств безопасности на кране (концевых выключателей, указателя грузоподъемности в зависимости от вылета стрелы, указателя угла наклона крана, ограничителя грузоподъемности и др.);

осмотру приборов сигнализации, освещения;

проверке наличия и исправности металлических съемных ограждений легкодоступных, находящихся в движении частей крана;

осмотру в доступных местах металлоконструкции и соединений секций стрелы и элементов ее подвески (канаты, растяжки, блоки, серьги и т.п.), а также металлоконструкции и сварных швов шасси и поворотной части;

проверке исправности дополнительных опор (выдвижных балок, домкратов), стабилизаторов;

осмотру (без снятия кожухов и разборки) электрических аппаратов (рубильников, контакторов и т.п.). Если кран питается от внешней сети, то машинист должен проверить состояние гибкого кабеля;

осмотру гидросистемы (для автомобильных кранов с гидроприводом), гибких шлангов (если они имеются), насосов и предохранительных клапанов на напорных линиях.

8. При осмотре крана машинист также должен убедиться в наличии таблички с указанием регистрационного номера, грузоподъемности к даты следующего частичного и полного технического освидетельствования.

9. Осмотр крана должен осуществляться только при неработающих механизмах, а осмотр крана с электрическим приводом – при отключенном рубильнике в кабине машиниста. Осмотр гибкого кабеля должен производиться при отключенном рубильнике, подающем напряжение на кабель.

10. При осмотре крана машинист должен пользоваться переносным светильником напряжением не выше 42 В (при недостаточном естественном освещении).

11. Работа всех механизмов должна быть опробована на холостом ходу.

12. В зимнее время машинист перед пуском крана в работу обязан прогреть гидросистему (у крана с гидроприводом). После 5-10 минут работы насосов на холостом ходу необходимо выполнять рабочие операции без груза в течение 10-15 минут.

13. Если при осмотре и опробовании автомобильного крана не было обнаружено неисправностей или они устранены машинистом, автомобильный кран может быть пущен в работу.

Другие похожие работы, которые могут вас заинтересовать.вшм>

6011. Техническое состояние автомобиля 126.23 KB
Оно бывает: Исправное состояние автомобиля это состояние при котором он соответствует всем требованиям технических условий и конструкторской документации. Так же неисправное состояние можно разделить на: Работоспособное состояние автомобиля это такое состояние при котором он способен выполнять определенную работу с параметрами указанными в его технической характеристике. Предельное состояние автомобиля агрегата или детали это такое состояние при котором их эксплуатировать дальше недопустимо.
14703. Контрольно-измерительные приборы автомобиля 1.08 MB
Для измерения уровня жидкости в частности бензина в баке применяются поплавковые реостатные датчики устройство которых показано на рис. Измерение температуры производится терморезистивными датчиками типа ТМ100А показанного на рис. Если требуется отслеживать некоторое фиксированное значение температуры то применяют термобиметаллические датчики рис. рис.
1493. Тягово-скоростные свойства автомобиля 252.52 KB
Курсовая работа охватывает важнейшие разделы дисциплины Автомобили и направлена на разъяснение ее наиболее значимых вопросов: обоснованного выбора конструктивных показателей автомобиля при проектировочном тяговом расчете оценку его топливной экономичности тяговоскоростных и тормозных свойств.
20042. Защита салона автомобиля от съёма информации 223.62 KB
Под техническим каналом утечки информации (ТКУИ) понимают совокупность объекта разведки, технического средства разведки (TCP), с помощью которого добывается информация об этом объекте, и физической среды, в которой распространяется информационный сигнал. По сути, под ТКУИ понимают способ получения с помощью TCP разведывательной информации об объекте.
4763. Горюче-смазочные материалы (ГСМ) для автомобиля ЗИЛ - 4334 26.5 KB
Выбор и правильное применение масла осложняются зачастую тем, что технической документацией на некоторые машины предусматривается большое число марок смазочных материалов. Поэтому унификация их и использование заменителей могут иметь большое значение для упрощения эксплуатации автомобильной техники.
11115. Улучшение тормозных качеств автомобиля в эксплуатации 1.52 MB
Разработчики и конструкторы тормозов зарубежных и отечественных фирм все большее предпочтение отдают разработке дисковых тормозов, обладающих стабильными характеристиками в широком диапазоне температур, давлений и скоростей. Но и такие тормоза не в полной мере могут обеспечить эффективное срабатывание тормозной системы, более надежными становятся антиблокировочные системы (АБС)
11117. Повышение проходимости грузового автомобиля блокировкой дифференциала 1.08 MB
В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой.
11068. Эксплуатационные качества автомобиля, обеспечивающие пассивную безопасность 5.53 MB
Определение эффективности мероприятий по повышению пассивной безопасности автомобиля. На основе исследований системы водитель-автомобиль и ее элементов необходимо придать автомобилю такие эксплуатационные свойства которые обеспечивали бы уменьшение вероятности ДТП а в случае их возникновения исключение травм водителя и пассажиров или хотя бы снижение их тяжести. Задачи; В связи с этим совершенствование эксплуатационных свойств автомобиля направленное на исключение или хотя бы снижение тяжести травм при ДТП...
791. Технологический процесс ремонта кузовов легкового автомобиля 134.6 KB
В процессе эксплуатации элементы и узлы (сборочные единицы) кузова испытывают динамические нагрузки напряжением от изгиба в вертикальной плоскости и скручивания, нагрузки от собственной массы, массы груза и пассажиров. На кузов и его узлы воздействуют также значительные напряжения, образующиеся в результате колебаний его при движении по неровностям
15546. Проект участка сборки коробки передач автомобиля ОКА 1.26 MB
Спроектировать участок сборки коробки передач автомобиля Ока. В проекте составлена схема сборки, методы достижения точности сборки, изделие было обработана на технологичность, произведены Технологические расчёты, организован сборочный процесс, произведены экономические расчёты, дано описания изделия, выбран годовой план выпуска собираемого изделия.

Тема 8. Система питания газобаллонного автомобиля

Упрощенная схема системы питания газобаллонного автомобиля

1 – Топливный бак. Предназначен для хранения запаса бензина на автомобиле.

2 – Баллон. Предназначен для хранения запаса сжиженного газа на автомобиле

3 – Коробка вентиляции с блоком арматуры. Здесь находятся наполнительный и расходный вентили, а также указатель уровня газа

5 – Переключатель "Бензин-Газ". Клавиша переключателя имеет три положения: Бензин – Выключено – Газ

6 – Топливопровод сжиженного газа

7 – Газовый шланг низкого давления

8 – Шланг управления

ФГ – Фильтр газа

ФБ – Фильтр бензина

БН – Бензонасос. Штатный бензонасос двигателя

КЛГ – Клапан газа электромагнитный. При подаче напряжения питания от переключателя 5 клапан открывается

КЛБ – Клапан бензина электромагнитный. При подаче напряжения питания от переключателя 5 клапан открывается

Р – Газовый редуктор. В редукторе газ испаряется и переходит из жидкого состояния в газообразное. Для испарения газа корпус редуктора подогревается горячим тосолом из двигателя. Редуктор также понижает давление газа от 12…15 кГ/см 2 до атмосферного

Д – Дозатор. Позволяет регулировать количество газа, поступающего в двигатель и тем самым устанавливать либо экономичный режим движения, либо динамичный.

Принцип действия системы питания газобаллонного автомобиля

Работа двигателя на бензине ничем не отличается от работы обычной системы питания карбюраторного двигателя. А именно, бензонасос БН всасывает бензин из бака 1. пропускает его через топливный фильтр ФБ и через открытый клапан КЛБ подает его в карбюратор КС. В карбюраторе бензин смешивается с воздухом и образует топливно-воздушную горючую смесь. Для переключения двигателя на газ переключатель 5 переводят сначала в положение "Выключено" (в этом положении оба клапана закрыты) и дожидаются, когда остаток бензина в поплавковой камере карбюратора будет израсходован. Затем переводят переключатель в положение "Газ". При этом открывается газовый клапан КЛГ и двигатель начинает работать на газе.

Баллон для сжиженного газа стальной, сварной. Давление сжиженного газа в баллоне зависит от соотношения пропана и бутана в смеси, не зависит от степени заполнения баллона и находится в пределах 12…15 кГ/см 2 . На баллоне закреплена коробка вентиляции с блоком арматуры. В блоке арматуры находятся наполнительный и расходный вентили. Наполнительный вентиль открывают на время заправки баллона сжиженным газом, по окончании заправки этот вентиль закрывают. Расходный вентиль закрывают при длительной стоянке автомобиля, в остальных случаях этот вентиль открыт. С блоком арматуры связан поплавковый механизм, расположенный внутри баллона и связанный со стрелочным указателем на наружной стороне блока арматуры. Кроме этого поплавковый механизм связан с ограничительным клапаном, который закрывает наполнительную магистраль при заполнении баллона на 90%. Газовая "подушка" объемом 10% необходима для компенсации теплового расширения сжиженного газа. Сжиженный газ имеет большой коэффициент теплового расширения. При отсутствии в баллоне газовой фазы увеличение температуры на 1 градус приводит к увеличению давления на 7 кГ/см 2 . Это может стать причиной разрушения баллона, поэтому заполнение баллона сжиженным газом на 100% не разрешается.

Заправочное устройство 4 обычно выводится наружу автомобиля, чтобы возможные утечки газа из устройства не попадали в салон автомобиля или кабину. В заправочном устройстве имеется шариковый клапан, пропускающий газ из заправочного шланга в баллон и не пропускающий его в обратном направлении.

Отбор сжиженного газа из баллона осуществляется с его дня, из жидкой фазы. По топливопроводу сжиженный газ поступает в фильтр ФГ и затем через открытый клапан КЛГ поступает в редуктор-испаритель. Корпус редуктора-испарителя подогревается горячим тосолом из системы охлаждения двигателя. Это необходимо для испарения сжиженного газа и перехода его в газообразное состояние. Газовый редуктор диафрагменного типа двухступенчатый, понижает давление газа до величины атмосферного давления. Топливопровод 6 – медная трубка, шланг управления 8 из маслостойкой резины, газовый шланг 7 из маслостойкой резины, с большим проходным сечением.

При неработающем двигателе в карбюраторе разрежения нет и атмосферное давление по шлангу управления 8 передается в редуктор Р, что приводит к его закрытию. Газ из редуктора не выходит. При работающем двигателе в карбюраторе образуется разрежение, которое по шлангу управления 8 передается в редуктор и снимает блокировку подачи газа в двигатель. Разрежение в смесительной камере карбюратора вызывает всасывание газа из газового шланга 7 низкого давления через дозатор Д. В карбюраторе-смесителе КС газ смешивается с воздухом и образует газовоздушную горючую смесь, которая поступает в цилиндры двигателя. Дозатор Д представляет собой обычный кран, которым можно увеличивать или уменьшать проходное сечение газовой магистрали низкого давления. При уменьшении количества газа в смеси, она становится более бедной, движение автомобиля становится более экономичным, но динамика автомобиля ухудшается. При вращении дозатора в другую сторону, всё изменяется в обратном направлении.

Газовый редуктор Ловато (Lovato ) – Италия

Малогабаритный газовый редуктор-испаритель Ловато предназначен для применения на легковых автомобилях – имеет в своем составе следующие функциональные элементы:

Испаритель сжиженного газа,

Двухступенчатый редуктор давления,

Разгрузочное устройство,

Устройство для принудительной подачи газа в смеситель,

Регулятор холостого хода.

Редуктор-испаритель Ловато: 1 – входной канал для сжиженного газа, 2 – седло клапана первой ступени, 3 – диафрагма второй ступени, 4 – диафрагма разгрузочного устройства, 5 – пружина разгрузочного устройства, 6 – электромагнит, 7 – постоянный магнит, 8 – рычаг клапана второй ступени, 9 – регулировочный винт холостого хода, 10 – клапан второй ступени, 11 – канал, 12 – диафрагма первой ступени, 13 – рычаг клапана первой ступени, 14 – пружина, 15 – клапан первой ступени, А – полость камеры первой ступени, В – полость камеры второй ступени, С – полость теплообменника, D – полость разгрузочного устройства, Е – штуцер разгрузочного устройства.

Редуктор состоит из корпуса, двух крышек и деталей клапанных механизмов. В полости С непрерывно циркулирует горячий тосол из системы охлаждения двигателя (подвод и отвод тосола на рисунке не показан). В результате этого весь корпус редуктора прогревается до рабочей температуры двигателя и, поэтому, сжиженный газ, попадая через канал 1 в полость А, испаряется и переходит в газообразное состояние. При этом газ воздействует на диафрагму первой ступени 12 и, преодолевая сопротивление пружины 14, смещает её вниз и через рычаг 13 закрывает клапан первой ступени 15. Равновесие силы давления газа и силы упругости пружины достигается при давлении 0,05…0,07 МПа (0,5…0,7 кГ/см 2).

Из полости А через канал 11 газ поступает к клапану первой ступени 10 и, проходя через него, заполняет полость В второй ступени. При этом газ воздействует на диафрагму 3 второй ступени, поднимает её, и через рычаг 8 закрывает клапан 10. Равновесие наступает при давлении в полости В 50…100 Па (0,0005…0,001 кГ/см 2), то есть, чуть выше атмосферного.

При работающем двигателе разрежение из смесителя передается по шлангу в полость В первой ступени и газ из неё поступает в смеситель. При этом давление в полости В снижается, диафрагма 3 опускается, открывает клапан 10 второй ступени, и газ из полости А поступает в полость В, а оттуда в смеситель. По мере расхода газа из полости А давление в ней снижается, диафрагма 12 поднимается, открывает клапан первой ступени 15 и газ из канала 1 поступает в полость А.

Разгрузочное устройство D предназначено для принудительного закрытия клапана второй ступени 10 при неработающем двигателе. Это необходимо для обеспечения пожарной безопасности автомобиля. Полость D связана с штуцером Е и далее, через шланг, с задроссельным пространством двигателя. При неработающем двигателе в полости D атмосферное давление и пружина 5 через рычаг 8 принудительно закрывает клапан 10 второй ступени, в результате чего газ из редуктора не выходит. При работающем двигателе разрежение из задроссельного пространства по шлангу, через штуцер Е передается в полость D. При этом диафрагма разгрузочного устройства, преодолевая сопротивление пружины 5, опускается и не препятствует движению рычага 8, которым управляет диафрагма 3 второй ступени.

На короткое плечо рычага 8 воздействует пружина и регулировочный винт 9 холостого хода. При помощи этого винта настраивают работу двигателя на холостом ходу.

Электромагнит 6 используется для принудительного открытия клапана 10 второй ступени. Это может потребоваться для обогащения смеси при пуске двигателя, или для выпуска газа из редуктора перед его обслуживанием или ремонтом. Для включения электромагнита водитель нажимает на кнопку управления в кабине. При этом напряжение 12В подается на обмотку электромагнита 6. Его сердечник втягивается внутрь обмотки и воздействует на рычаг 8, открывая клапан 10 второй ступени, – газ поступает в смеситель. Сердечник электромагнита выступает наружу и, в случае необходимости, водитель может нажать на него непосредственно, со стороны моторного отсека.Документ

116 5.9.Техническое обслуживание системы питания газобаллонного автомобиля ………………………………………………………………………...118 Варианты тематического оценивания... имеет. 5.9. Техническое обслуживание системы питания газобаллонного автомобиля ЕТО. Перед выездом проверить...

  • Рабочая учебная программа по предмету «Устройство автомобиля» для подготовки специалистов по профессии 19 Слесарь по ремонту автомобилей», срок обучения 3 года

    Рабочая учебная программа

    10. Система питания двигателя газобаллонного автомобиля Принципиальная схема газобаллонных установок, ... 8 Система питания инжекторного двигателя 4 9 Система питания дизельного двигателя 18 12 10 Система питания двигателя газобаллонного автомобиля 8 ...

  • Методические указания

    И работу элементов системы питания газобаллонного автомобиля . Задания для самостоятельной работы 1. Начертить схему системы питания газобаллонного автомобиля ГАЗ-53 ...

  • Автомобильные двигатели могут работать на сжатом и сжиженном газе. Компоновочная схема системы питания при работе на сжатом газе: баллон -> подогреватель -> редуктор высокого давления -> редуктор низкого давления -> смеситель-карбюратор.

    При работе на сжиженном газе компоновочная схема такая: баллон -> испаритель -> редуктор низкого давления -> смеситель -> карбюратор. Каждый двигатель, работающий на газе, имеет дополнительно обычную бензиновую систему как резервный вариант.

    Система питания двигателей, работающих на сжатом газе. Баллоны выполнены из стали и рассчитаны на давление 19,6 МПа. Вместимость их 50 л, масса 93 кг. Вентили используют для перекрытия магистралей при неработающем двигателе. Подогреватель газа служит для предотвращения возможного замерзания влаги, находящейся в газе. Он выполнен в виде нескольких витков газопровода высокого давления на выпускном коллекторе.

    Газовый редуктор высокого давления (ГРВД) служит для снижения давления до 1,2 МПа. Газ из баллона поступает в полость Л редуктора через штуцер с накидной гайкой 14 (рис. 7.6, а) и керамический фильтр 13 к клапану 12. На клапан давит сверху через толкатель 3 и мембрану пружина редуктора. При давлении газа в полости Б меньше заданного толкатель опускает клапан 12, пропуская через образовавшуюся щель газ в полость Б. Газ при этом дополнительно проходит через фильтр 11. При достижении заданного давления в полости Б сила его на мембрану уравновешивает пружину и клапан 12 закрывает проход газа. Выходное давление регулируют рукояткой с винтом 4. Работу редуктора контролируют по манометру, принимающему сигнал от датчика высокого давления 1 и сигнализатора выходного давления 6 (аварийного датчика).

    Газовый редуктор низкого давления (ГРНД) снижает давление до рабочего значения, необходимого для подачи в смеситель (0,085 МПа).

    К ГРНД газ поступает через электромагнитный клапан-фильтр, который при выключении зажигания перекрывает подачу газа. Если

    Рис. 7.6.

    а - высокого давления: 7 - датчик давления; 2 - мембрана; 3 - толкатель; 4 - регулировочный винт; 5 - колпак; 6 - аварийный датчик; 7 - штуцер; 8 - выходной штуцер; 9 - предохранительный клапан; 10 - седло клапана; 11 - фильтр; 12 -редукционный клапан; 13 - входной фильтр; 74-накидная гайка; б - низкого давления: 7 - вход экономайзера; 2 - диафрагма; 3 - пружина диафрагмы; 4 - шток; 5 - пружина диафрагмы второй ступени; 6 - диафрагма разгрузочного устройства; 7 - входной клапан первой ступени; 8 - входной штуцер; 9 - пружина диафрагмы первой ступени; 10 - рычаг клапана; 7 7 - диафрагма первой ступени; 72- клапан второй ступени; 13 - клапан экономайзера; 74- рычаг

    газ не поступает, то атмосферное давление в полости Д (она соединена с атмосферой) прогибает диафрагму 11 (рис. 7.6, б) вниз и через рычаг 10 открывает клапан 7 первой ступени редуктора. В полости Б также атмосферное давление, поэтому диафрагма 2 через пружину 5 и шток 4 перемещает рычаг 14 вверх и открывает клапан 12 второй ступени регулятора. Давление во всем редукторе атмосферное.

    При включении зажигания и открытом магистральном вентиле газ через вход I, клапан 7 поступает в полости Г и В и давит на диафрагмы 11 и 2. Если двигатель не работает и потребления газа нет, то эти диафрагмы закрывают соответственно клапаны 12 и 7.

    При пуске двигателя через выход II разрежение передается в полость В , открывая клапан 12, а затем в полость Г, открывая клапан 7. При малых нагрузках эта система поддерживает в полости Сдавление 50-100 кПа. По мере увеличения открытия дросселя разрежение увеличивается, клапан 12 открывается больше и газа поступает больше. При полном открытии дросселя срабатывает клапан экономайзера

    13. Разрежение передается на его диафрагму, пружина клапана прогибает диафрагму вниз, открывая клапан и пропуская дополнительное количество газа на выход II.

    Газовый смеситель-карбюратор служит для приготовления горючей смеси при работе на газе и на бензине. Для ЗИЛ-431510 применяют смеситель-карбюратор К-91, для ГАЗ-53-27 - К-126БГ.

    Смеситель-карбюратор выполнен на базе основного карбюратора. На основном режиме средних нагрузок газ поступает от редуктора через открытый под действием разрежения в диффузорах обратный клапан в газовые форсунки и далее в двигатель. При полной нагрузке экономайзер подает дополнительное количество газа.

    При работе на холостом ходу газ поступает за дроссель. Общее количество газа, подаваемое в систему холостого хода, регулируется винтом.

    Система питания двигателей, работающих на сжиженном газе. Баллоны 20 (рис. 7.7) рассчитаны на давление 1,6 МПа. Они имеют расходные вентили 21 и 22 для парообразной и жидкой фаз газа, предохранительный клапан, манометры 16,17. Магистральный вентиль 18 служит для отключения баллона.

    Испаритель 8 обеспечивает перевод газа из жидкого состояния в газообразное. По шлангам 7 и 9 подходит вода для подогрева из системы охлаждения. Фильтр 14 улавливает смолистые вещества и серу. Он может быть установлен в газовом редукторе или отдельно. Газовый редуктор 13 снижает давление до 0,1 МПа. Устройство его аналогично ГРНД системы для сжатого газа. Дозатор и смеситель 5

    Рис. 7.7.

    7 - проставка; 2 - фильтр-отстойник; 3 - топливный насос; 4,5 - смесители; 6,10, 11 - газопроводы; 7,9 - шланги от системы охлаждения; 8 - испаритель; 12 - экономайзер; 13 - редуктор; 14 - фильтр с электромагнитным клапаном; 15 -входной штуцер; 16, 17 -манометры; 18 - магистральный вентиль; 19 - резервный бак; 20 -баллон; 21 - газовый вентиль; 22 - жидкостный вентиль

    образуют горючую смесь, которая поступает в двигатель. Резервный бак 19 предусмотрен для запаса бензина. Манометры 16 и 17 позволяют контролировать давление в баллоне и редукторе.

    Возможные неисправности газовой аппаратуры связаны с утечками газа, которые происходят из-за негерметичности соединений, повреждения диафрагм, неплотной посадки клапанов редукторов и ослабления пружин. Утечки газа в подкапотное пространство и багажник могут привести к образованию взрывоопасной смеси. Пускать газовый двигатель при утечках газа запрещается.

    При пуске двигателя проверяют по манометру давление в баллонах (оно должно быть больше 1,2 МПа), открывают расходные вентили. Устанавливают переключатель вида топлива в положение «Газ», приоткрывают дроссельные заслонки, включают стартер. При начале работы двигателя устанавливают частоту вращения 800- 1000 мин -1 до его прогрева. Если двигатель работал на бензине, то при переводе его на работу на газе открывают вентили, устанавливают переключатель вида топлива в положение «О» до полной выработки бензина из поплавковой камеры (двигатель начнет работать с перебоями). После этого переключатель устанавливают в положение «Газ». Перевод с газа на бензин проводят в обратном порядке.

    Техническое обслуживание. При ЕТО осматривают и проверяют все соединения, баллоны и вентили, сливают отстой из редуктора низкого давления, проверяют отсутствие подтеканий бензина.

    При ТО-1 дополнительно проверяют действие предохранительного клапана, снимают и очищают фильтрующие элементы. Азотом или сжатым воздухом проводят опрессовку (нагнетают до определенного давления и засекают время падения давления) всей системы. Проверяют работу двигателя на холостом ходу при использовании как бензина, так и газа.

    При ТО-2 дополнительно регулируют редукторы и предохранительный клапан на требуемое давление, поверяют манометры. Проверяют и регулируют аппаратуру на токсичность работы двигателя.

    При сезонном обслуживании помимо операций ТО-2 сливают отстой и промывают бензобак. Один раз в три года проходят освидетельствование (проверку в Гостехнадзоре) газовых баллонов.

    Все работы проводят после перекрытия расходных вентилей баллонов, израсходовав или выпустив газ из системы питания. Запрещается подтягивать крепления, соединения и проводить ремонт аппаратуры, если в системе имеется газ под давлением.

    КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

    • 1. Перечислите марки бензинов и дизельных топлив. Что определяет марка бензина для применения его в конкретном двигателе?
    • 2. Что такое карбюрация топлива?
    • 3. Что такое а, какой состав смеси необходим на основных режимах работы двигателя?
    • 4. Перечислите основные части простейшего карбюратора.
    • 5. Чем различаются действительная и желаемая характеристики простейшего карбюратора?
    • 6. Зачем нужны компенсационные колодцы и воздушные жиклеры в карбюраторе?
    • 7. Что такое экономайзер, эконостат?
    • 8. Для чего предназначены поплавковая камера и игольчатый клапан?
    • 9. Объясните работу карбюратора на основных режимах двигателя.
    • 10. Перечислите составные части системы питания на газе (сжатом или сжиженном).
    • 11. Для чего предназначены редукторы высокого и низкого давления?
    • 12. Повторите правила безопасности при работе с газовой аппаратурой.

    Системы питания двигателей легковых автомобилей, работающих на сжиженном нефтяном газе, может работать как по принципу карбюрации, так и по принципу впрыска.

    Система питания для сжиженного газа, работающая по принципу карбюрации

    Система питания для сжиженного газа, работающая по принципу карбюрации, используется как на двигателях работающих на бензине, оборудованных карбюратором, так и на двигателях, оборудованных системой впрыска бензина. Система питания, работающая по принципу карбюрации при использовании ее на двигателях с электронным впрыском бензина, кроме основных элементов обычной системы впрыска содержит ресивер 2, редуктор-испаритель 6, серводвигатель для управления расходом газа 7, трубопровод для подачи газа в диффузор.

    Рис. Система питания для сжиженного газа, работающая по принципу карбюрации, установленная на бензиновом двигателе с электронной системой впрыска:
    1 – вентиляционная трубка для газового ресивера; 2 – ресивер с сжиженным газом; 3 – арматура газового ресивера; 4 – наполнительный клапан; 5 – клапан перекрытия газа; 6 – редуктор-испаритель; 7 – серводвигатель для управления расходом газа; 8 – электронный блок управления; 9 – переключатель вида используемого топлива «газ-бензин»; 10 – диффузор-смеситель; 11 – лямда-зонд; 12 – датчик разряжения; 13 – аккумуляторная батарея; 14 – выключатель зажигания; 15 – реле

    При переключении на использование газа в качестве топлива, газ поступает из ресивера 2 в редуктор-испаритель, где происходит снижение давление газа и его испарение. В зависимости от сигналов, поступаемых от датчиков, блок управления выдает определенный сигнал на серводвигатель 7, определяющий расход газа на определенном режиме работы двигателя. Газ по трубопроводу поступает в диффузор, где смешивается с воздухом и проходит к впускному клапану, а затем в цилиндр двигателя. Для управления работой двигателя, предусматриваются отдельные блоки управления для работы двигателя на бензине и газе. Между обоими блоками управления идет обмен информацией.

    Система питания для сжиженного газа, работающая по принципу впрыска

    Система питания для сжиженного газа, работающая по принципу впрыска используется на двигателях, оборудованных системой впрыска бензина. Система питания для подачи сжиженного газа во впускной трубопровод содержит ресивер с газом, редуктор-испаритель 6, распределитель с шаговым электродвигателем, форсунок-смесителей 11.

    Рис. Система впрыска сжиженного нефтяного газа (оборудование для работы на бензине не показано):
    1 – электронный блок управления; 2 – диагностический разъем; 3 – переключатель для выбора типа используемого топлива; 4 – реле; 5 – датчик давления воздуха; 6 – редуктор-испаритель; 7 – клапан перекрытия подачи газа; 8 – распределитель с шаговым электродвигателем; 9 – прерыватель-распределитель или индуктивный датчик для определения частоты вращения коленчатого вала; 10 – лямбда-зонд; 11 – форсунки для впрыскивания газа

    Газ из ресивера поступает в редуктор 6, где происходит испарение газа и снижение его давления. Ресиверы оборудуются наружным на­полнительным (впускным) клапаном (с приспособлением, отсекающим подачу газа при заполнении ресивера на 80% его объема) и соленоидным выпускным клапаном. Емкости ресиверов для легковых автомобилей составляют от 40 до 128 л.

    После выбора типа используемого топлива, с помощью переключателя 3 и включении зажигания, при использовании газа, срабатывает клапан 7 на подачу газа, который выключается после отключения зажигания.

    В электронный блок управления 1 от датчика 5 поступает информация о разряжении во впускном трубопроводе, зависящего от степени открытия дроссельной заслонки, информация о частоте вращения коленчатого вала от датчика или прерывателя-распределителя 9, информация о составе топливовоздушной смеси от лямбда-зонда 9. На основании полученной информации блок управления определяет поворот угол поворота шагового распределителя, регулирующего расход газа, поступающего через форсунки 11 во впускной трубопровод.

    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама