THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач , несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д )

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами . Промежуточные цапфы называют шейками , концевые – шипами .

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г ); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис.). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис.).

Цапфы валов для подшипников качения (рис.) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис.)

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).

19.11.2015

Валы и оси используются в машиностроении для фиксации различных тел вращения (это могут быть шестерни, шкивы, роторы и другие элементы, устанавливаемые в механизмах).

Есть принципиальное отличие валов от осей: первые осуществляют передачу момента силы, создаваемого вращением деталей, а вторые испытывают напряжение изгиба под действием внешних сил. При этом валы всегда являются крутящимся элементом механизма, а оси могут быть как крутящимися, так и неподвижными.

С точки зрения металлообработки валы и оси – это металлические детали, чаще всего имеющие круглое поперечное сечение.

Виды валов

Валы различаются между собой по конструкции оси. Выделяют следующие виды валов:

  • прямые. Конструктивно не отличаются от осей. В свою очередь, различают гладкие, ступенчатые и фасонные прямые валы и оси. Наиболее часто в машиностроении используются ступенчатые валы, которые отличает простота установки на механизмы
  • коленчатые, состоящие из нескольких колен и коренных шеек, которые опираются на подшипники. Составляют элемент кривошипно-шатунного механизма. Принцип действия заключается в преобразовании возвратно-поступательного движения во вращательное, либо наоборот.
  • гибкие (эксцентриковые). Применяются для передачи момента вращения между валами со смещенными осями вращения.

Производство валов и осей – одно из наиболее динамичных направлений в металлургической промышленности. На основе этих элементов получают следующие изделия:

  1. элементы передачи вращательного момента (детали шпоночного соединения, шлицы, соединений с натягом и т.д.);
  2. опорные подшипники (качения или скольжения);
  3. уплотнения концов валов;
  4. элементы, регулирующие узлы передачи и опоры;
  5. элементы осевой фиксации лопаток роторов;
  6. галтели перехода между элементами разного диаметра в конструкции.

Выходные концы валов имеют форму цилиндра или конуса, соединяемыми при помощи муфт, шкивов, звездочек.

Валы и оси также могут быть полыми и сплошными. Внутри полых валов могут быть вмонтированы другие детали, кроме того, они могут применяться для облегчения общего веса конструкции.

Функцию осевых фиксаторов, устанавливаемых на вал деталей, выполняют ступени (бурты), распорные втулки со съемной осью, кольца, пружинные упорные кольца подшипников.

Предприятие "Электромаш" осуществляет изготовление данной продукции на производственной площадке, оснащенной самым современным оборудованием. У нас вы можете купить валы и оси любого типа под заказ . Рейтинг: 3.02

Описание работы

Технология изготовления,применение деталей данного типа в механике,в авиации,в промышленности

Введение 2
1.Общий раздел 4
1.1. Описание конструкции и служебного назначения детали. 4
1.2. Технологический контроль чертежа детали и анализ детали на технологичность. 4
2.Технологический раздел. 7
2.1.Характеристика среднесерийного типа производства. 7
2.2.Выбор вида и метода получения заготовки; экономическое обоснование выбора заготовки. 9
2.3.Разработка маршрута механической обработки детали с выбором оборудования и станочных приспособлений. Выбор и обоснование баз. 13
2.4.Расчет межоперационных размеров на две наиболее точные поверхности аналитическим методом, на остальные табличным. 15
2.5.Разбивка технологического процесса на составляющие операции. Выбор режущего, вспомогательного и измерительного инструмента. 22
2.6. Расчет режимов резания и нормирование операций 23
2.7.Расчет норм времени 25
3. Конструкторский раздел 27
3.1. Конструирование и расчет режущего инструмента 27
СПИСОК ЛИТЕРАТУРЫ 30

Работа содержит 1 файл

К.Т2.151901.4Д.05.000ПЗ


Рост промышленности и народного хозяйства, а также темпы перевооружения их новой техникой в значительной мере зависят от уровня развития машиностроения. Технический прогресс в машиностроении характеризуется совершенствованием технологии изготовления машин, уровнем их конструктивных решений и надежности их в последующей эксплуатации.

В настоящее время важно - качественно, дешево, в заданные сроки с минимальными затратами живого и овеществленного труда изготовить машину, применив современную высокопроизводительную технику, оборудование, инструмент, технологическую оснастку, средства механизации и автоматизации производства.

Разработка технологического процесса изготовления машины не должна сводится к формальному установлению последовательности обработки поверхностей деталей, выбору оборудования и режимов. Она требует творческого подхода для обеспечения согласованности всех этапов построения машины и достижения требуемого качества с наименьшими затратами.

При проектировании технологических процессов изготовления деталей машин необходимо учитывать основные направления в современной технологии машиностроения:

Приближение заготовок по форме, размерам и качеству поверхностей к готовым деталям, что дает возможность сократить расход материала, значительно снизить трудоемкость обработки деталей на металлорежущих станках, а также уменьшить затраты на режущие инструменты, электроэнергию и прочее.

Повышение производительности труда путем применения: автоматических линий, автоматов, агрегатных станков, станков с ЧПУ, более совершенных методов обработки, новых марок материалов режущих инструментов.

Концентрация нескольких различных операций на одном станке для одновременной или последовательной обработки большим количеством инструментов с высокими режимами резания.

Применение электрохимических и электрофизических способов размерной обработки деталей.

Развитие упрочняющей технологии, повышение прочностных и эксплуатационных свойств деталей путем упрочнения поверхностного слоя механическим, термическим, термомеханическим, химикотермическим способами.

Применение прогрессивных высокопроизводительных методов обработки, обеспечивающих высокую точность и качество поверхностей деталей машины, методов упрочнения рабочих поверхностей, повышающих ресурс работы детали и машины в целом, эффективное использование автоматических и поточных линий, станков с ЧПУ - все это направлено на решение главных задач: повышение эффективности производства и качества продукции.

1.Общий раздел

1.1. Описание конструкции и служебного назначения детали.

Данная деталь «Ось», массой 3.7кг изготовлена из стали 45 ГОСТ 1050-88.

Деталь относится к классу «вал» и имеет форму вращения. Деталь состоит из 6 ступеней:

На первой ступени нарезана резьба М20-69, с шероховатостью Ra6.3, на длине 21 мм.

Вторая цилиндрическая Ø20 h8мм, шероховатость поверхности Ra3.2, длиной 18 мм; Допуск h8 предназначен для жесткой посадки стыкуемой детали.

Третья ступень выполнена без механической обработки, Ø25мм, длиной 5 мм.

Четвертая цилиндрическая ступень Ø20мм, длиной 80мм, на которой выполнены пазы для сопрягаемой детали и исключающие поворот сопрягаемой детали.

Пятая ступень выполнена Ø15f7 мм, длиной 25 мм, этот допуск говорит о том, что сопрягаемая деталь одевается на ось жестко.

На шестой ступени выполнена резьба М12-83 и отверстие Ø3.2мм.

Деталь «Ось» предназначена для передачи крутящего момента.

1.2. Технологический контроль чертежа детали и анализ детали на технологичность

Химический состав и механические свойства материала детали

Сталь 45 ГОСТ 1050-88. Сталь углеродистая конструкционная качественная.

Химический состав детали

С Si Mn Ni S P Cr Cu As Fe
0,42÷0,5 0,17÷0,37 0,5÷0,8 до 0,25 до 0,04 до 0,035 до 0,25 до 0,25 до 0,08 ост.

Механические свойства

Деталь достаточно технологична. В упрощении конструкции деталь не нуждается. Базой детали является ось и торцы. Искусственные базы не требуются.

Токарную обработку будем производить в центрах, и в специальных приспособлениях. Фрезерование производим с помощью фрезы круглого сечения, а сверление на сверлильном станке с ЧПУ и с применением специального приспособления. Нарезание резьбы будем производить на токарном станке с ЧПУ.

Для измерения заданных на чертеже размеров следует использовать следующие мерительные инструменты: скобы, пробки, штангенциркули, шаблоны, индикаторы, резьбовые пробки.

Качественный анализ технологичности конструкции детали.

Деталь должна изготавливаться с минимальными трудовыми и материальными затратами. Эти затраты можно сократить в значительной степени в результате правильного выбора варианта технологического процесса, его оснащения, механизации и автоматизации, применения оптимальных режимов обработки и правильной подготовки производства. На трудоемкость изготовления детали оказывают особое влияние ее конструкция и технические требования на изготовление.

Данная деталь по качественной оценке является технологичной:

Конструкция детали состоит из стандартных и унифицированных конструктивных элементов; большинство обрабатываемых поверхностей детали имеют правильную простановку размеров, оптимальные степень точности и шероховатость;

Конструкция детали позволяет изготавливать ее из заготовки, полученной рациональным способом;

Конструкция обеспечивает возможность применения типовых и стандартных технологических процессов при изготовлении.

Все вышеизложенное, позволяет сделать вывод, что представленная деталь является технологичной.

Коэффициент точности обработки определяется по формуле

(1)

где

где цифры обозначают квалитеты точности размеров.

n 1 ; n 2 и т.д. – количество размеров данного квалитета точности.

Коэффициент шероховатости обработки определяется по формуле

(3)

где

где цифры обозначают классы шероховатости поверхности.

При К ТО ≤0,80 деталь считается трудоемкой в производстве.

n 1 ; n 2 и т.д. – количество поверхностей данного класса шероховатости.

При К ШО ≤0,16 деталь считается трудоемкой в производстве.

Вывод : Кт = 0,99 Кш = 0,91

0,99› 0,8 0,91› 0,16

Все выше изложенное позволяет сделать вывод, что представленная деталь является технологичной.

2.Технологический раздел

2.1.Характеристика среднесерийного типа производства

Характеристика вида производства.

Серийный тип производства характеризуется ограниченной номенклатурой выпуска, детали изготавливаются периодически повторяющимися партиями. Трудоёмкость и себестоимость ниже, чем в единичном производстве. Различают мелкосерийное, среднесерийное и крупносерийное типы производства. Крупносерийный тип производства характеризуется применением специализированного оборудования расположенного на участке по ходу технологического процесса. Применяется специализированный режущий и мерительный инструмент. Квалификация рабочих низкая. Применяется принцип не полной взаимозаменяемости.

Таблица 3.

Ориентировочное определение типа производства

Тип

производства

Годовой объем выпуска
Тяжелых Средних Легких
> 30 кг 8 - 30 кг < 8 кг
Единичное < 5 < 10 < 100
Мелкосерийное 5 – 100 10 – 200 100 - 500
Среднесерийное 100 – 300 200 – 500 500 - 5000
Крупносерийное 300 – 1000 500 – 5000 5000 - 50000
Массовое > 1000 > 5000 > 50000

Ориентировочно по таблице определяем тип производства - среднесерийное.

Более точно можно определить тип производства по коэффициенту закрепления операций К з.о. .

при К з.о. = 1 - производство массовое,

1 £ К з.о. £ 10 – крупносерийное,

10 £ К з.о. £ 20 - среднесерийное,

20 £ К з.о. £ 40 - мелкосерийное,

40 > К з.о. – единичное производство.

Значение К з.о. на стадии разработки процесса вычисляют по формуле:

      Где: S О – количество операций, выполняемых на участке в течение месяца,

Прежде чем разбираться, чем отличаются между собой вал и ось, следует иметь четкое представление о том, что, собственно, представляют собой эти детали, для чего и где они используются и какие функции выполняют. Итак, как известно, валы и оси предназначены для удержания на них вращающихся деталей.

Определение

Вал - это деталь механизма, имеющая форму стержня и служащая для передачи на другие детали этого механизма крутящего момента, тем самым создавая общее вращательное движение всех расположенных на нем (на валу) деталей: шкивов, эксцентриков, колес и др.

Ось - это деталь механизма, предназначенная для соединения и скрепления между собой деталей данного механизма. Ось воспринимает только поперечные нагрузки (напряжение изгиба). Оси бывают неподвижные и вращающиеся.


Ось

Сравнение

Основное отличие оси от вала состоит в том, что ось не осуществляет передачу крутящего момента на другие детали. На нее оказывают воздействие только поперечные нагрузки, и она не испытывают сил кручения.

Вал, в отличие от оси, передает полезный крутящий момент деталям, которые на нем закреплены. Кроме того, оси бывают как вращающимися, так и неподвижными. Вал же вращается всегда. Большинство валов можно разделить по геометрической форме оси на прямые, кривошипные (эксцентриковые) и гибкие. Также бывают валы коленчатые или непрямые, которые служат для преобразования возвратно-поступательных движений во вращательные. Оси же по своей геометрической форме бывают только прямыми.

Выводы сайт

  1. Ось несет вращающиеся части механизма, не передавая им никакого крутящего момента. Вал передает другим деталям механизма полезный крутящий момент, так называемое вращающееся усилие.
  2. Ось может быть как вращающейся, так и неподвижной. Вал бывает только вращающимся.
  3. Ось имеет только прямую форму. Вал по форме может быть прямым, непрямым (коленчатым), эксцентриковым и гибким.

Классификация валов и осей строительной машины. Какие виды валов применяются в машинах? Отличие обработки валов и осей, механизмы в виде спаренных валов.

Виды валов и осей машины

Виды валов

Оси - поддерживают вращающиеся части машин. Они могут быть вращающимися и неподвижными.

Валы - не только поддерживают, но и передают вращение.
Бывают: прямые, кривошипные и коленчатые.
Валы рассчитывают на одновременное действие крутящего и изгибающего моментов.
Оси рассчитывают только на изгиб.

  1. вал с прямой осью;
  2. коленчатый вал;
  3. гибкий вал;
  4. карданный вал.

Виды осей

  1. неподвижные;
  2. подвижные.

Оси и валы отличаются от прочих деталей машины тем, что на них насаживаются зубчатые колёса, шкивы и другие вращающиеся части. По условиям работы оси и валы отличаются друг от друга.

Осью называют деталь, которая лишь поддерживает насаженные на неё детали. Ось не испытывает кручения, поскольку нагрузку на неё идёт от расположенных на ней деталей. Она работает на изгиб и не передаёт вращающий момент.

Что же касается вала, то он не только поддерживает детали, но и передаёт момент вращения. Поэтому вал испытывает как изгиб, так и кручение, иногда также сжатие и растяжение. Среди валов выделяют торсионные валы (или просто торсионы), которые не поддерживают вращение деталей и работают исключительно на кручение. Примеры - это карданный вал автомобиля, соединительный валик прокатного стана и многое другое.

Участок в опоре вала или оси называется цапфой, если воспринимает радиальную нагрузку, или пятой, если на него осуществляется осевая нагрузка. Концевая цапфа, принимающая радиальную нагрузку, называется шипом, а цапфу, находящуюся на некотором расстоянии от конца вала, называют шейкой. Ну а та часть вала или оси, которая ограничивает осевое перемещение деталей, называется буртиком.

Посадочная поверхность оси или вала, на которую, собственно, и устанавливаются вращающиеся детали, часто делают цилиндрическими и реже - коническими, чтобы облегчить постановку и снятие тяжёлых деталей, когда требуется высокая точность центрирования. Поверхность, обеспечивающая плавный переход между ступенями, носит название галтели. Переход может выполняться с использованием канавки, которая делает возможным выход шлифовального круга. Концентрация напряжения может быть уменьшена за счёт уменьшения глубины канавок и увеличения закругления канавок и гантелей, насколько возможно.

Чтобы сделать установку вращающихся деталей на ось или вал проще, а также предотвратить травмы рук, торцы делают с фасками, то есть немного обтачивают на конус.
Виды осей и валов

Ось может быть вращающейся (например, ось вагона) или не вращающейся (например, ось блока машины для подъёма грузов).

Ну а вал может быть прямым, коленчатым или гибким. Прямые валы распространены шире всего. Коленчатые находят применение в кривошипно-шатунных передачах насосов и двигателей. Они преобразовывают возвратно-поступательные движения во вращательные, либо наоборот. Что касается гибких валов, то они являются, по сути, мног заходными пружинами кручения, витыми из проволок. Их используют, чтобы передавать момент между узлами машины, если они при работе меняют положение относительно друг друга. И коленчатые, и гибкие валы классифицируются как специальные детали и изучаются на специальных учебных курсах.

Чаще всего ось или вал имеют круглое сплошное сечение, но могут они иметь и кольцевое поперечное сечение, которое позволяет уменьшить общую массу конструкции. Сечение некоторых участков вала может иметь шпоночную канавку или шлицы, а может быть и профильным.

При профильном соединении детали между собой скрепляются с помощью контакта по круглой не плавной поверхности и могут, помимо крутящего момента, передавать и осевую нагрузку. Несмотря на надёжность профильного соединения, его нельзя назвать технологичным, так что применение у них ограничено. Шлицевое же соединение классифицируют по форме профиля зубьев - оно может быть прямобочным, эвольвентным или треугольным.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама