THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В разделе на вопрос Анилин-представитель аминов,строение,функциональная группа!? заданный автором Волосок лучший ответ это Анили́н (фениламин) - органическое соединение с формулой С6H5NH2, простейший ароматический амин. Содержит аминогруппу -NH2. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит.
Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок) .
Осн. способ произ-ва анилина-каталитич. восстановление нитробензола водородом в газовой или жидкой фазе. Газофазный процесс осуществляют в трубчатом контактном аппарате при 250-350°С на никель- или медьсодержащем кат
С6Н5NO2 + 3H2 = C6H5NH2 + 2H2O + 443,8кДж/моль
Анилин отделяется от воды расслаиванием и очищается дистилляцией; реакц. вода обезвреживается биохимически. Для получения 1 т анилина расходуется 1,35 т нитробензола, 800 м3 Н2 и 1 кг катализатора.
В жидкой фазе анилин получают при повыш. давлении Н2 (до 1,1 МПа) и 160-170°С на никелевом или палладиевом кат. с одноврем. отгонкой воды и анилина благодаря теплоты р-ции.

Урок 4 . Анилин как представитель ароматических аминов

Состав и строение, молекулярная и структурная формулы;

Взаимное влияние атомов в молекуле;

Физические свойства;

Химические свойства: реакции анилина по аминогруппе и ароматическому ядру.

Состав и строение, молекулярная и структурная формулы . Анили́н (аминобензол, фениламин) - органическое соединение с формулой C 6 H 5 NH 2 , состоит из бензольного кольца, в котором один атом водорода замещен на аминогруппу. Простейший ароматический амин. Структурная формула:

Впервые анилин получил в 1826 в процессе перегонки индиго с известью немецкий химик, который дал ему название «кристаллины». 1834 Ф. Рунге обнаружил анилин в каменноугольной смоле и назвал «кианолом». 1841 Ю. Ф. Фришце получил анилин в результате нагрева индиго с раствором КОН и назвал его «анилином». 1842 анилин получил М. М. Зинин путем восстановления нитробензола (NH 4) 2 SO 3 и назвал его «бензидамом». 1843 А. В. Гофман установил идентичность всех перечисленных соединений. Слово «анилин» происходит от названия одного из растений, содержащих индиго.

Взаимное влияние атомов в молекуле .

Влияние аминогруппы на свойства бензольного кольца. По отношению к кольцу аминогруппа выступает донором электронов, т.е. нагнетает на кольцо электронную плотность. Эта избыточная плотность в кольце в основном сосредота­чивается в положениях 2,4,6 (орто - и ядра-положениях):


В результате: 1) реакции замещения в кольце для ани­лина протекают легче, чем для бензола; 2) вступающий в кольцо заместитель направляется аминогруппой преиму­щественно в положения 2,4,6.

Влияние кольца на свойства аминогруппы. Ароматиче­ское кольцо оттягивает часть электронной плотности с атома азота, вовлекая ее в сопряжение с л-системой. Поэтому ос­новные свойства анилина выражены слабее, чем у аммиака и тем более, чем у алифатических аминов. Водный раствор анилина не изменяет окраску индикаторов. В этом и состо­ит влияние бензольного кольца на свойства аминогруппы.

Изучение среды раствора анилина http://my.mail.ru/mail/ntl0000/video/29154/31055.html?related_deep=1

Физические свойства . Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит

Физические свойства анилина https://www.youtube.com/watch?v=2c6J-4sNGPc

Химические свойства . Обязательно просмотрите видео .

Химические свойства https://www.youtube.com/watch?v=qQ6zqUXDJdk

Анилин в отличие от бензола легко реагирует с бромной водой с образованием белого нерастворимого в воде осадка 2,4,6-триброманилина:


Аналогично протекает реакция анилина с раствором хлора в СС1 4 , этаноле.

Анилин практически не реагирует с водой (очень слабые основные свойства); основные свойства анилина проявля­ются в реакциях с сильными минеральными кислотами:


Анилин реагирует с хлорангидридом уксусной кислоты:


При обработке таких солей водными растворами щело­чей можно выделить анилин:

Окисление анилина https://www.youtube.com/watch?v=nvxipFGxTRk

Взаимодействие анилина с соляной кислотой https://www.youtube.com/watch?v=VNUTpSaWQ0Q

Бромирование анилина https://www.youtube.com/watch?v=1UPJceDpelY

Пары анилина сгорают в избытке кислорода

4C 6 H 5 –NH 2 + 31O 2 → 24CO 2 + 14H 2 O + 2N 2

Горение анилина https://www.youtube.com/watch?v=cYtCWMczFFs

Тема 5. НИТРОГЕНОСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Урок 51

Тема урока. Анилин, его состав, строение молекулы, физические свойства. Химические свойства анилина: взаимодействие с неорганическими кислотами, бромной водой.

Взаимное влияние атомов в молекуле анилина. Получение анилина

Цели урока: ознакомить учащихся с анилином как представителем нитросоединений, его физическими свойствами; дать представление о строении молекулы анилина; рассмотреть химические свойства анилина, способы его получения и применения.

Тип урока: комбинированный урок усвоения знаний, умений и навыков и творческому применению их на практике.

Формы работы: рассказ учителя, эвристическая беседа, лабораторная работа.

Демонстрация 1. Взаимодействие анилина с хлоридной кислотой.

Демонстрация 2. Взаимодействие анилина с бромной водой.

Оборудование: схема строения молекулы анилина.

1. Почему амины называют органическими основаниями?

Три ученика у доски, остальные в тетрадях выполняют задание.

2. Составьте уравнения реакций взаимодействия:

а) метиламина с серной кислотой;

б) диметиламина с нітратною кислотой;

в) метилетиламіну с хлоридной кислотой.

3. Одержте этиламин:

а) из соответствующего нитросоединения;

б) из соответствующего спирта;

в) с етиламоній хлорида.

4. Как классифицируются амины по типу углеводородного радикала?

III. Изучение нового материала

1. История открытия анилина

Анилин (феніламін) - органическое соединение с формулой C 6 H 5 NH 2 , простейший ароматический амин. представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворимый, хорошо растворяется в органических растворителях. На воздухе анилин быстро окисляется и приобретает красно-бурую окраску. Ядовит.

Впервые анилин получил в 1826 г. в процессе перегонки индиго с известью немецкий химик, который дал ему название «кристалін». 1834 г. Ф. Рунге обнаружил анилин в каменноугольной смоле и назвал «кіанолом». 1841. Ю. Ф. Фрішце получил анилин в результате нагрева индиго с раствором КОН и назвал его «анилином». 1842 г. анилин получил М. М. Зинин путем восстановления нітробензену (NH 4)2SO 3 и назвал его «бензидамом». 1843. А. В. Гофман установил идентичность всех перечисленных соединений. Слово «анилин» происходит от названия одного из растений, содержащих индиго - Indigofera anil (современное международное название растения - Indigofera suffruticosa ).

Анилин - простейший ароматический амин. Амины являются более слабыми основаниями, чем аммиак, так как неразделенная электронная пара атома Азота смещается в сторону бензольного кольца, сочетаясь с р-электронами бензольного ядра.

Уменьшение электронной плотности на атоме Азота приводит к снижению способности відщеплювати протоны от слабых кислот. Поэтому анилин - слабее основание, чем алифатические амины и аммиак, взаимодействует только с сильными кислотами (HCl , H 2SO 4), а его водный раствор не окрашивает лакмус в синий цвет.

2. Получение анилина

♦ Предложите способы получения анилина.

Восстановление нитросоединений обычно используют для получения первичных аминов ароматического ряда (реакция Зинина).

Атомарный водород образуется в момент выделения в результате реакции цинка (или алюминия) с кислотой или щелочью.

Изначально анилин получали путем восстановления нітробензену молекулярным водородом; практический выход анилина не превышал 15 %. 1842 г. профессор Казанского университета Н. М. Зинин разработал более рациональный способ получения анилина восстановлением нітробензену (реакция Зинина):

В процессе взаимодействия концентрированной соляной кислоты с железом выделяется атомарный водород, более химически активный по сравнению с молекулярным.

3. Химические свойства анилина

Анилин - слабое основание. С сильными кислотами анилин способен образовывать соли.

Демонстрация 1. Взаимодействие анилина с хлоридной кислотой

Приготовим смесь анилина с водой. Добавим к смеси хлоридную кислоту. Происходит растворение анилина. В растворе образуется феніламоній хлорид, или солянокислый анилин.

Задача 1. Запишите уравнения взаимодействия анилина с серной кислотой.

Аминогруппа влияет на бензольне кольцо, вызывая увеличение подвижности атомов Водорода по сравнению с бензеном, причем, вследствие сопряжения неподеленной электронной пары с п-электронной ароматической системой, увеличивается электронная плотность в орто - и пара-положениях.

В процессе нитрования и бромирования анилин легко образует 2,4,6-трехзамещенные продукты реакции. Например, анилин энергично реагирует с бромной водой с образованием белого осадка 2,4,6-триброманіліну. Эта реакция используется для качественного и количественного определения анилина:

Демонстрация 2. Взаимодействие анилина с бромной водой, Анилин легко окисляется. На воздухе анилин буреет, вследствие действия других окислителей образует вещества разнообразной окраски. С хлорной известью CaOCl 2 дает характерное фиолетовое окрашивание. Это одна из самых чувствительных качественных реакций на анилин.

*Практическое значение имеет реакция анилина с нітритною кислотой при пониженной температуре (около 0 °С). В результате этой реакции (реакции діазотування) образуются соли диазония, которые используются в синтезе нітробарвників и ряда других соединений.

При более высокой температуре реакция происходит с выделением азота, а анилин превращается в фенол:

4. Применение анилина. Вредное воздействие на человека

1) Основная область применения анилина - синтез красителей и лекарственных средств.

Промышленное производство фиолетового красителя мовеїну на базе анилина началось в 1856 г. Путем окисления анилина хромовой смесью (K 2Cr 2O 7 + H 2SO 4) получают «анилиновый черный - краситель для ткани.

Сейчас подавляющая часть (85 %) производимого в мире анилина используется для производства метилдіізоціанатів, что в дальнейшем применяются для производства полиуретанов. Анилин также используется при производстве искусственных каучуков (9 %), гербицидов (2 %) и красителей (2 %).

Итак, анилин применяется преимущественно как полупродукт в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но учитывая ожидаемый рост объемов производства полиуретанов возможно значительное изменение картины потребителей в среднесрочной перспективе.

2) Анилин влияет на центральную нервную систему, вызывает кислородное голодание организма за счет образования в крови метгемоглобина, гемолиза и дегенеративных изменений эритроцитов. В организм анилин попадает во время дыхания, в виде паров, а также через кожу и слизистые оболочки. Всасывание через кожу усиливается в случае нагрева воздуха или употребление алкоголя.

В случае легкого отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин и ногтей. В случае отравлений средней тяжести также наблюдаются тошнота, рвота, иногда шатание во время ходьбы, учащение пульса. Тяжелые случаи отравления являются крайне редкими.

В случае хронического отравления анилином (анілізм) возникают токсический гепатит, а также нервно-психические расстройства, расстройства сна, ухудшение памяти.

В случае отравления анилином необходимо прежде всего вывести пострадавшего из очага отравления, обмыть теплой (но не горячей!) водой. Также необходимо вдыхание кислорода с карбогеном. Кроме этого, применяют кровопускание, введение антидотов (метиленовая синь), сердечно-сосудистых средств. Следует обеспечить пострадавшему покой.

IV. Подведение итогов урока

Подводим итоги урока, оценивает работу учащихся на уроке.

V. Домашнее задание

Проработать материал параграфа, ответить на вопросы к нему, выполнить упражнения.

Творческое задание: найти информацию по теме «Влияние анилина на окружающую среду».

Билет№19

Задача. Вычислить объем углекислого газа, полученного при сгорании 8 грамм метана.

1. Окислительно – восстановительные реакции (на примере взаимодействия алюминия с оксидами некоторых металлов, концентрированной серной кислоты с медью).

Окислительно-восстановительные реакции (разобрать на примерах взаимодействия алюминия с оксидом железа (III), азотной кислоты с медью).

К окислительно-восстановительным реакциям могут быть отнесены химические реак-ции следующих типов.

Реакции замещения (вытеснения)

Примером реакций этого типа может служить реакция между оксидом железа (III) и алюминием. В этой реакции алюминий вытесняет железо из раствора, причем сам алюминий окисляется, а железо восстанавливается.

Приведем еще два примера:

В этой реакции хлор вытесняет бром из раствора (хлор окисляется, бром восстанавливается), содержащего ионы брома.

Реакции металла с кислотами

Эти реакции, в сущности, тоже представляют собой реакции замещения. В качестве примера приведем реакцию между медью и азотной кислотой. Медь вытесняет водород из кислоты. При этом происходит окисление меди, которая превращается в гидратированный катион, а содержащиеся в растворе кислоты гидратированные протоны азота восстанавливаются, образуя оксид азота.

Реакции металлов с водой

Эти реакции тоже принадлежат к типу реакций замещения. Они сопровождаются вытеснением из воды водорода в газообразном состоянии. В качестве примера приведем реакцию между металлическим натрием и водой:

Реакции металлов с неметаллами

Эти реакции могут быть отнесены к реакциям синтеза. В качестве примера приведем образование хлорида натрия в результате сгорания натрия в атмосфере хлора

2. Анилин – представитель аминов, химическое строение и свойства.

Основные свойства анилина: а) ароматический амин – анилин имеет большое практическое значение; б) анилин C6H5NH2 – это бесцветная жидкость, которая плохо растворяется в воде; в) имеет светло-коричневую окраску при частичном окислении на воздухе; г) анилин сильно ядовит. Основные свойства у анилина проявляются слабее, чем у аммиака и аминов предельного ряда. 1. Анилин не изменяет окраски лакмуса, но при взаимодействии с кислотами образует соли. 2. Если к анилину прилить концентрированную соляную кислоту, то происходит экзотермическая реакция и после охлаждения смеси можно наблюдать образование кристаллов соли: +Cl-– хлорид фениламмония. 3. Если на раствор хлорида фениламмония подействовать раствором щелочи, то снова выделится анилин: [С6Н5NН3]++ Сl-+ Nа++ ОН-? Н2О + С6Н5NН2 + Nа++ СI-. Здесь выражено влияние ароматического радикала фенила – С6Н5. 4. В анилине C6H5NH2 бензольное ядро смещает к себе неподеленную электронную пару азота аминогруппы. При этом электронная плотность на азоте уменьшается и он слабее связывает ион водорода, а это значит, что свойства вещества как основания проявляются в меньшей степени. 5. Аминогруппа влияет на бензольное ядро. 6. Бром в водном растворе не реагирует с бензолом. Способы применения анилина: 1) анилин– один из важнейших продуктов химической промышленности; 2) он является исходным веществом для получения многочисленных анилиновых красителей; 3) анилин используется при получении лекарственных веществ, например сульфаниламидных препаратов, взрывчатых веществ, высокомолекулярных соединений и т. д. Открытие профессором Казанского университета Н.Н. Зининым (1842 г.) доступного способа получения анилина имело большое значение для развития химии и химической промышленности. 1. Промышленность органического синтеза началась с производства красителей. 2. Широкое развитие этого производства стало возможным на основе использования реакции получения анилина, известной сейчас в химии под названием реакции Зинина. Особенности реакции Зинина: 1) эта реакция заключается в восстановлении нитробензола и выражается уравнением: С6Н5-NO2 + 6Н? С6Н5-NН2 + 2Н2О; 2) распространенным промышленным способом получения анилина является восстановление нитробензола металлами, например железом (чугунными стружками), в кислой среде; 3) восстановление нитросоединений соответствующего строения – это общий способ получения аминов.

Задачи урока: на примере анилиза закрепить знания учащихся о химических свойствах аминов; дать представление об ароматических аминах; показать практическую значимость анилина как важнейшего продукта химической промышленности .

Оборудование: на демонстрационном столе - анилин, вода, фенолфталеин, соляная кислота, раствор щелочи, пробирки.

Анилин изучается с целью конкретизации общего понятия об аминах и как важнейший представитель этого класса соединений.

В связи с этим урок можно провести в форме рассказа с максимальным привлечением учащихся для обсуждения заданий и вопросов:

Назовите гомологические ряды углеводородов и укажите особенности их строения.

Какие вещества относятся к аминам?

Какова формула ароматического амина?

Как доказать, что анилин проявляет основные свойства? Составьте уравнение химической реакции.

Далее внимание учащихся привлекают к реакции взаимодействия анилина с бромом, не останавливаясь на влиянии аминогруппы на бензольное кольцо, а лишь указывая, что особенности строения молекулы анилина обусловливают возможность осуществления этой реакции.

О получении и применении анилина для изготовления красителей, различных фармацевтических препаратов, фотореагентов, взрывчатых веществ, пластических масс и т.д. рассказывает учитель.

На этом уроке, по нашему мнению, целесообразно отметить в рассказе о производстве и применении анилина и токсическое воздействие выбросов как производства, так и побочных продуктов при использовании аминосоединений.

Развернутый план-конспект урока

При изучении данной темы надо закрепить основную идею о развитии органических веществ и причинах, порождающих их многообразие; углубить понятие о ковалентной связи на примерах аминов; расширить знания о водородных связях и амфотерных соединениях .

Приступая к рассмотрению темы, предлагают учащимся вспомнить, какие соединения, содержащие азот, им известны. Учащиеся называют нитробензол, нитроглицерин, тринитроклетчатку. Коротко повторяют сведения о свойствах нитробензола и его получении в лаборатории. При этом составляют на доске уравнение реакции, отмечают ее тип (замещения) и дают название (реакция нитрования). На вопрос, могут ли быть проведены реакции нитрования предельных углеводородов, учащиеся дают утвердительный ответ. После этого записывают уравнения реакций нитрования до пятого гомолога. Учитель отмечает, что впервые эти реакции были проведены русским ученым М.И. Коноваловым в 1886 г. По аналогии с нитробензолом дает названия вновь полученным азотсодержащим веществам - нитрометан, нитроэтан и т.д. Далее коротко учитель знакомит учащихся с физическими свойствами полученных гомологов. Из химических свойств нитросоединений следует подчеркнуть их способность восстанавливаться водородом. Для того, чтобы учащиеся убедились в образовании гомологического ряда новых азотсодержащих веществ и самостоятельно их назвали, составляют уравнения реакций:

СН 3 NО 2 + 3Н 2 2Н 2 О + СН 3 NН 2

С 2 Н 5 NO 2 + 3Н 2 2Н 2 О + С 2 Н 5 NН 2

С 3 Н 7 NO 2 + 3Н 2 2Н 2 О + С 3 Н 7 NН 2 и т.д.

Обращают внимание на образование новой функциональной группы атомов, - NН 2 - аминогруппы. Здесь надо отметить, что аминами их называют по тем радикалам, которые входят в состав молекулы, с прибавлением слова «амин». После этого учащиеся без труда дают названия полученным веществам: метиламин, этиламин и др. Сопоставляя записанные ранее уравнения реакций нитрования с реакциями восстановления, делают вывод о генетической связи между гомологическими рядами органических веществ: углеводороды можно превратить в нитросоединения, а нитросоединения - в амины:

СН 4 + НNО 3 Н 2 О + СН 3 NО 2 ;

СН 3 NО 2 + 3Н 2 2Н 2 О + СН 3 NH 2 .

Эти соединения являются аминами жирного ряда, так как они получены от предельных углеводородов. Затем описывают физические свойства первых представителей ряда аминов. Прежде чем перейти к изучению их химических свойств, обращают внимание на состав функциональной группы. Аминогруппа - остаток от аммиака, в котором один атом водорода замещен на углеводородный радикал. Далее предлагают рассмотреть амины как производные аммиака. Учащиеся отмечают, что в аммиаке могут быть заменены на углеводородные радикалы и два других атома водорода. Тогда в зависимости от числа остатков углеводородов, входящих в молекулу, амины могут быть

СН 3 NH 2 , С 2 Н 5 NH 2

первичные

вторичные

третичные

В природе амины встречаются при разложении белковых соединений; например, в селедочном рассоле содержится метиламин, диметиламин, три-метиламин. Все амины являются производными от аммиака, поэтому они должны обладать и сходством с ним. Этот вопрос учащиеся могут решать самостоятельно (к этому уроку они должны повторить свойства аммиака). Например, один из учащихся записывает в левой части доски уравнения реакций, характеризующих химические свойства аммиака (взаимодействие с водой, с кислотами, горение в токе кислорода). Здесь же демонстрируют эти опыты, особо подчеркивая способность аммиака гореть только в токе кислорода.

Затем проводят подобные опыты с аминами (см. пп. 1.1.3.1.). На основании опытов делают выводы о свойствах аминов.

В отличие от аммиака амины горят на воздухе. Делают вывод: амины по химическим, свойствам сходны с аммиаком, но в отличие от него горят на воздухе. Это свойство привело ученого Вюрца к открытию аминов в 1848 г. Во время объяснений в правой части доски параллельно со свойствами аммиака записывают уравнения реакций с аминами. В результате сопоставления свойств аммиака и аминов учащиеся убеждаются, что среди органических веществ существуют вещества со свойствами оснований органические основания. Объясняют это, исходя из электронного строения, рассматривая на примере образования иона аммония. Напоминают, что у атома азота из пяти валентных электронов три неспаренных идут на образование ковалентных связей с атомами водорода, образуя молекулу аммиака, а два спаренных электрона остаются необобщенными, свободными. За счет их у атома азота устанавливается ковалентная связь с ионом (протоном) водорода воды или кислоты. При этом в первом случае освобождаются ионы гидроксила, которые определяют свойства оснований, во втором - ионы кислотного остатка. Рассматривают электронное строение аминов:

Особое внимание обращают на неподеленную электронную пару азота, которая, так же как и в аммиаке, идет на образование ковалентной связи с протоном водорода. При этом образуется органическое соединение со свойствами оснований (1) или соли (2), если протон (ион) водорода был от кислоты:



Формула соли может быть записана и по-иному:

СН 3. NH 2. НС1

Хлористоводородный метиламин

Учащимся известно, что свойства веществ определяются их строением. Сравнивая электронное строение гидрооксида аммония и метиламмония. они могут установить, какие вещества - амины или аммиак - являются более сильными основаниями.

Целесообразно напомнить, что метальный радикал способен оттеснять от себя электронную плотность. Тогда на азоте возникает повышенная электронная плотность и он прочнее будет удерживать протон водорода в молекуле. Ион гидроксила освобождается, концентрация его в растворе увеличивается, поэтому амины жирного ряда и являются более сильными основаниями, чем аммиак. Для закрепления материала учитель предлагает вопрос: усиление или ослабление основных свойств ожидается у диметиламина и триметиламина? Учащиеся знают, что радикал способен оттеснять от себя электронную плотность, поэтому они самостоятельно делают вывод, что двух- и трехзамещенные амины по сравнению с однозамещенными должны быть более сильными основаниями. Два радикала в большей степени увеличат электронную плотность на азоте, и, следовательно, азот сильнее будет удерживать ион водорода, а гидроксильные ионы станут поступать в раствор, т.е. сила основных свойств аминов зависит от величины отрицательного заряда на атоме азота: чем он больше, тем больше сила оснований. Казалось бы, третичный амин должен быть самым сильным основанием, но эксперимент показывает обратное. Видимо, три метальных радикала экранируют неподеленную пару электронов азота, мешают свободному присоединению ионов водорода, а, следовательно, в раствор мало поступает ионов гидроксила, поэтому среда слабоосновная.

Для того чтобы учащиеся лучше усвоили генетическую связь между классами органических веществ, разбирают образование ароматических аминов от «родоначальника» всех ароматических углеводородов - бензола через нитросоединения. Прежде всего, коротко напоминают способы получения аминов жирного ряда от предельных углеводородов, затем предлагают вспомнить свойства изученного ранее бензола и объяснить их, исходя из электронного строения бензола. Для этого желательно вывесить таблицу электронного строения бензола, подготовить модель его молекулы. Таким образом, учащиеся сами «протянут ниточку» от бензола к фениламину через нитробензол и без труда запишут соответствующие уравнения реакций.

Здесь же демонстрируют опыт получения нитробензола в колбе с обратным холодильником. На доске записывают уравнение соответствующей реакции. Затем проводят опыт восстановления полученного нитробензола в анилин. Во время выполнения этого опыта сообщают учащимся о реакции Н.Н. Зинина и ее значении для народного хозяйства.

Затем демонстрируют чистый анилин (если он есть в школе), рассказывая о его токсичности и об осторожном обращении с ним. Демонстрируют некоторые физические свойства: агрегатное состояние, цвет, запах, растворимость в воде.

Затем переходят к изучению химических свойств анилина. По аналогии с аминами жирного ряда предполагают наличие у анилина основных свойств. Для этого в стакан, в котором проверяли растворимость анилина в воде, приливают несколько капель фенолфталеина. Окраска раствора не меняется. Проверяют взаимодействие анилина с концентрированными соляной и серной кислотами. После охлаждения смеси учащиеся наблюдают кристаллизацию солей, следовательно, анилин проявляет свойства оснований, не слабее, чем амины жирного ряда. В ходе обсуждения этих опытов составляют уравнения реакций, дают названия образующимся веществам.

Далее демонстрируют взаимодействие солей анилина со щелочью (проводим аналогию с солями аммония). Здесь попутно ставят вопрос: в виде каких соединений амины жирного ряда находятся в селедочном рассоле, если он взаимодействует со щелочью с образованием аминов? (Как правило, учащиеся отвечают: в виде солей). Проверяют растворимость их в воде и взаимодействие солей анилина с окислителями, например с двухромовокислым калием. Этой реакцией обнаруживают вещества, разнообразные по окраске. Сообщают учащимся, что на свойствах анилина основано производство мно-гочисленных анилиновых красителей (в том числе и такого ценного, как синтетическое индиго), лекарственных веществ, пластических масс. В заключение демонстрируют опыт взаимодействия анилина с хлорной известью. Отмечают, что эта реакция является характерной на анилин. Для проверки предлагают обнаружить анилин в смеси веществ, полученных при постановке опыта восстановления нитробензола металлами. Учащиеся еще раз убеждаются в существовании генетической связи между классами. Для закрепления изученного предлагают составить уравнения реакций, подтверждающие возможность осуществления следующих превращений:

Учащиеся на опыте увидят, что основные свойства анилина по сравнению с аминами предельного ряда ослаблены. Объясняется это влиянием ароматического радикала фенила С 6 Н 5 . Для пояснения вновь расссматривваем электронное строение бензола. Учащиеся вспоминают, что подвижное -электронное облако бензольного ядра образовано шестью электронами (хорошо иметь модель молекулы или хороший рисунок молекулы бензола). Необходимо подчеркнуть, что в бензольном ядре вместо одного атома водорода стоит аминогруппа, нарисовать электронное строение молекулы амина и еще раз обратить внимание на свободную неподеленную пару электронов атома азота в аминогруппе, которая вступает во взаимодействие с -электронами бензольного кольца. Вследствие этого на азоте электронная плотность уменьшается, свободная пара электронов с меньшей силой удерживает протон водорода и в раствор поступает мало гидроксильных ионов. Все это определяет более слабые основные свойства анилина, что наблюдалось при реакции его с индикаторами.

Неподеленная пара электронов азота аминогруппы, вступая во взаимодействие с -электронами бензольного ядра, смещает электронную плотность в орто- и пара-положения, делая ядро бензола в этих местах химически более активным. Это легко подтверждается опытом взаимодействия анилина с бромной водой, который тут же показывают:

В заключение следует обратить внимание учащихся на существующую в природе связь между веществами, на их развитие от простого к сложному.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама