THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Система охлаждения двигателя

Назначение и классификация систем охлаждения
Температура газов в цилиндрах работающего двигателя достигает 1800-2000 градусов. Только часть выделенного при этом тепла преобразуется в полезную работу. Оставшаяся часть отводится в окружающую среду системой охлаждения, системой смазки и наружными поверхностями двигателя.
Чрезмерное повышение температуры двигателя приводит к выгоранию смазки, нарушению нормальных зазоров между его деталями следствием чего является резкое возрастание их износа. Возникает опасность заедания и заклинивания. Перегрев двигателя вызывает уменьшение коэффициента наполнения цилиндров, а в бензиновых двигателях еще и детонационное сгорание рабочей смеси.
Большое снижение температуры работающего двигателя также нежелательно. В переохлажденном двигателе мощность снижается из-за потерь тепла; вязкость смазки увеличивается, что повышает трение; часть горючей смеси конденсируется, смывая смазку со стенок цилиндра, повышая тем самым износ деталей. В результате образования серных и сернистых соединений стенки цилиндров подвергаются коррозии.
Система охлаждения предназначена для поддержания наивыгоднейшего теплового режима. Системы охлаждения подразделяются на воздушные и жидкостные. Воздушные в настоящее время на автомобилях встречаются крайне редко. Системы жидкостного охлаждения могут быть открытыми и закрытыми. Открытые системы – системы, сообщающиеся с окружающей средой через пароотводную трубку. Закрытые системы разобщены от окружающей среды, а поэтому давление охлаждающей жидкости в них выше. Как известно, чем выше давление, тем выше температура закипания жидкости. Поэтому закрытые системы допускают нагрев ОЖ до более высоких температур (до 110-120 градусов).

По способу циркуляции жидкости системы охлаждения могут быть:
- принудительными, в которых циркуляция обеспечивается насосом, расположенным на двигателе;
- термосифонными, в которых циркуляция жидкости происходит за счет разницы плотности жидкости, нагретой деталями двигателя и охлажденной в радиаторе. Во время работы двигателя жидкость в рубашке охлаждения нагревается и поднимается в верхнюю ее часть, откуда через патрубок поступает в верхний бачок радиатора. В радиаторе жидкость отдает теплоту воздуху, плотность ее повышается, она опускается вниз и через нижний бачок вновь возвращается в систему охлаждения.
- комбинированными, в которых наиболее нагретые детали (головки блоков цилиндров) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.

Устройство системы охлаждения

Наибольшее распространение в автомобильных ДВС получили закрытые жидкостные системы с принудительной циркуляцией охлаждающей жидкости (ОЖ).

Закрытая система охлаждения с принудительной циркуляцией ОЖ


В состав таких систем входят: рубашка охлаждения блока и головки цилиндров, радиатор, насос ОЖ, вентилятор, термостат, патрубки, шланги, расширительный бачок. В систему охлаждения также включается радиатор отопителя.
ОЖ, находящаяся в рубашке охлаждения, нагреваясь за счет тепла, выделяемого в цилиндре двигателя, поступает в радиатор, охлаждается в нем и возвращается в рубашку охлаждения. Принудительная циркуляция жидкости в системе обеспечивается насосом, а усиленное охлаждение ее - за счет интенсивного обдува воздухом радиатора. Степень охлаждения регулируется при помощи термостата и путем автоматического включения или выключения вентилятора. Жидкость в систему охлаждения заливают через горловину радиатора или расширительный бачок. Емкость системы охлаждения легкового автомобиля, в зависимости от объема двигателя – от 6 до 12 литров. Сливают ОЖ через пробки, расположенные обычно в блоке цилиндров и нижнем бачке радиатора.
Радиатор отдает воздуху тепло от ОЖ.

Устройство радиатора


Он состоит из сердцевины, верхнего и нижнего бачков и деталей крепления. Для изготовления радиаторов используются медь, алюминий и сплавы на их основе. В зависимости от конструкции сердцевины радиаторы бывают трубчатые, пластинчатые и сотовые.


Виды сердцевин радиаторов


Наибольшее распространение получили трубчатые радиаторы. Сердцевина таких радиаторов состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему бачкам радиатора. Наличие пластин улучшает теплоотдачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее круглых, так как поверхность охлаждения их больше; кроме того, в случае замерзания ОЖ в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.
В пластинчатых радиаторах сердцевина устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются реже.
В сердцевине сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи ОЖ. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника. Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения.
В верхний бачок впаяны заливная горловина, закрываемая пробкой, и патрубок для подсоединения гибкого шланга, подводящего ОЖ к радиатору.


Устройство пробки радиатора


Сбоку наливная горловина имеет отверстие для пароотводной трубки. В нижний бачок впаян патрубок отводящего гибкого шланга. Шланги прикреплены к патрубкам стяжными хомутиками. Такое соединение допускает относительное смещение двигателя и радиатора. Горловину герметически закрывает пробка, изолирующая систему охлаждения от окружающей среды. Она состоит из корпуса, парового (выпускного) клапана, воздушного (впускного) клапана и запорной пружины. В случае закипания жидкости в системе охлаждения давление пара в радиаторе возрастает. При превышении определенного значения открывается паровой клапан и пар выходит через пароотводную трубку. После остановки двигателя жидкость охлаждается, пар конденсируется и в системе охлаждения создается разрежение. При этом возникает опасность сдавливания трубок радиатора. Для предотвращения этого явления служит воздушный клапан, который, открываясь, пропускает внутрь радиатора воздух.
Для компенсации изменения объема охлаждающей жидкости вследствие изменения температуры в системе устанавливается расширительный бачок .

Расширительный бачок


В некоторых радиаторах нет заливной горловины, и заполнение системы охлаждающей жидкостью осуществляется через расширительный бачок. В этом случае паровой и воздушный клапаны располагаются в его пробке. Метки, наносимые на расширительном бачке, позволяют контролировать уровень ОЖ в системе охлаждения. Проверка уровня проводится на холодном двигателе.

Насос ОЖ




Устройство насоса ОЖ


обеспечивает ее принудительную циркуляцию в системе охлаждения. Насос центробежного типа устанавливается в передней части блока цилиндров и состоит из корпуса, вала с крыльчаткой и сальника. Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. Привод насоса осуществляется ремнем от шкива коленвала двигателя. Под действием центробежной силы, возникающей при вращении крыльчатки, ОЖ из нижнего бачка радиатора поступает к центру корпуса насоса и отбрасывается к его наружным стенкам. Из отверстия в стенке корпуса насоса ОЖ попадает в отверстие рубашки охлаждения блока цилиндров. Вытеканию ОЖ между корпусом насоса и блоком препятствует прокладка, а в месте выхода вала - сальник.
Для усиления потока воздуха, проходящего через сердцевину радиатора, установлен вентилятор . Его монтируют либо на одном валу с насосом ОЖ, либо отдельно. Он состоит из крыльчатки с лопастями, привернутой к ступице. Для улучшения обдува воздухом двигателя и радиатора на последнем может быть установлен направляющих кожух. Привод вентилятора может осуществляться несколькими способами. Самый простой – механический, когда вентилятор жестко закрепляется на одной оси с насосом ОЖ. В этом случае вентилятор постоянно включен, что приводит к излишнему расходу мощности двигателя. Кроме того, вентилятор работает даже в неоптимальных режимах, например, сразу после запуска двигателя. Поэтому в современных двигателях такое подключение не используется, а вентилятор соединяется с приводом через муфту. Конструкция муфты может быть различной – электромагнитная, фрикционная, гидравлическая, вязкостная (вискомуфта), но все они обеспечивают автоматическое включение вентилятора при достижении определенной температуры ОЖ. Такое включение обеспечивает температурный датчик. Причем использование гидромуфты и вискомуфты делает возможным не только автоматическое включение и выключение вентилятора, но и плавное изменение частоты его вращения в зависимости от температуры.
Вентилятор может приводиться не от коленвала двигателя, а отдельным электродвигателем. Такое подключение используется наиболее часто, так как позволяет довольно просто осуществлять автоматическое регулирование моментов включения и выключения с помощью термисторного датчика (его электрическое сопротивление изменяется в зависимости от нагрева). Если же работой системы охлаждения управляет контроллер двигателя, то появляется возможность изменения и частоты вращения. Кроме того, вентилятор «реагирует» и на режимы движения. Например, он включается на холостом ходу при езде в пробках для предотвращения перегрева и выключается при загородной езде на высокой скорости, когда естественного обдува радиатора вполне достаточно для его охлаждения.

В период пуска двигателя для уменьшения износа необходимо быстрее прогреть его до рабочей температуры и при дальнейшей эксплуатации поддерживать эту температуру. Для ускорения прогрева двигателя и поддержания оптимальной его температуры служит термостат .

Термостат


Термостат устанавливают в рубашке охлаждения головки цилиндров на пути циркуляции жидкости из рубашки в верхний бачок радиатора. В системах охлаждения используются термостаты с жидкостным и с твердым наполнитетелем.
Термостат с жидкостным наполнителем состоит из корпуса, гофрированного латунного цилиндра, штока и двойного клапана. Внутри гофрированного латунного цилиндра налита жидкость, температура кипения которой 70-75 градусов. Когда двигатель не прогрет, клапан термостата закрыт и циркуляция происходит по малому кругу: насос ОЖ - рубашка охлаждения - термостат - насос.
Термостат с твердым наполнителем состоит из корпуса, внутри которого помещен медный баллон, заполняемый массой, состоящей из медного порошка, смешанного с церезином. Баллон сверху закрыт крышкой. Между баллоном и крышкой расположена диафрагма, сверху которой установлен шток, воздействующий на клапан. В непрогретом двигателе масса в баллоне находится в твердом состоянии, и клапан термостата закрыт под действием пружины. При прогреве двигателя масса в баллоне начинает плавиться, объем ее увеличивается и она давит на диафрагму и шток, открывая клапан.


Малый и большой круг охлаждения


Работа термостата


Контроль температуры ОЖ осуществляется по указателю температуры и при помощи сигнальной лампы перегрева двигателя на щитке приборов. Управление сигнальной лампой и указателем осуществляют датчики, ввернутые в верхний бачок радиатора и в рубашку охлаждения головки цилиндров.


Датчики системы охлаждения


В качестве теплоносителя может применяться вода (в устаревших конструкциях двигателей) или антифриз. Качество ОЖ, применяемой для системы охлаждения двигателя, имеет не меньшее значение для долговечности и надежности его работы, чем качество топлива и смазочных материалов.
Антифризы - охлаждающие жидкости для системы охлаждения автомобиля, не замерзающие при отрицательной температуре. Даже если температура внешней среды будет ниже минимальной рабочей температуры антифриза, он превратится не в лед, а в рыхлую массу. При дальнейшем понижении температуры эта масса затвердеет, не увеличившись в объеме и не повредив при этом двигатель. Основа антифризов - водный раствор этиленгликоля или пропиленгликоля. Пропиленгликолевая основа применяется реже. Ее главное отличие – безвредность для человека и окружающей среды, но и более высокая цена при тех же потребительских качествах. Этиленгликоль агрессивен к материалам двигателя, поэтому в него добавляют присадки. Всего их может быть до полутора десятков – противокоррозионных, антивспенивающих, стабилизирующих. Именно комплектом присадок и определяется качество и область применения антифриза. По типу присадок все антифризы делятся на три большие группы: неорганические, органические и гибридные.
Неорганические (или силикатные) – наиболее «древние» жидкости, в которых в качестве ингибиторов коррозии применяются силикаты, фосфаты, бораты, нитриты, амины, нитраты и их комбинации. К этой группе антифризов относится и широко распространенный у нас Тосол (хотя многие ошибочно считают его особым типом ОЖ). Главный их недостаток – малый срок службы из-за быстрого разрушения присадок. Пришедшие в негодность компоненты присадок образуют отложения в системе охлаждения, ухудшая теплообмен. Также возможно образование силикатных гелей (сгустков) в ОЖ.
В наиболее современных органических (или карбоксилатных) антифризах используются присадки на основе солей карбоновых кислот. Такие антифризы, во-первых, образуют значительно более тонкую защитную пленку на поверхностях системы охлаждения, а во-вторых, ингибиторы действуют только в местах появления коррозии. Следовательно, присадки расходуются намного медленнее, тем самым существенно повышая срок службы антифриза.
Промежуточное положение между органическими и неорганическими антифризами занимают гибридные. Их пакет присадок в основном включает соли карбоновых кислот, но и небольшую долю силикатов или фосфатов.
Антифризы выпускаются либо в виде концентратов, либо в виде готовых к применению жидкостей. Концентрат перед применением нужно разбавить дистиллированной водой. Пропорция определяется необходимой минимальной температурой замерзания антифриза. Основа антифризов бесцветна, поэтому производители окрашивают их в разные цвета с помощью красителей. Это делается для облегчения контроля уровня антифриза и предупреждения о токсичности жидкостей. Совпадение цвета не всегда является свидетельством совместимости антифризов.
В современных двигателях система охлаждения двигателя может использоваться для охлаждения отработавших газов в системе их рециркуляции (EGR), охлаждения масла в автоматической коробке передач, охлаждения турбокомпрессора. Некоторые двигатели с непосредственным впрыском топлива и турбонаддувом имеют двухконтурную систему охлаждения. Один контур предназначен для охлаждения головки блока цилиндров, другой – блока цилиндров. В контуре, охлаждающем ГБЦ, поддерживается температура на 15-20 градусов ниже. Это позволяет улучшить наполнение камер сгорания и процесс смесеобразования, а также снизить риск возникновения детонации. Циркуляция жидкости в каждом из контуров регулируется отдельным термостатом.

Основные неисправности системы охлаждения

Внешними признаками неисправностей системы охлаждения является перегрев или переохлаждение двигателя. Перегрев двигателя возможен в результате следующих причин: недостаточное количество ОЖ, слабое натяжение или обрыв ремня насоса ОЖ, невключение муфты или электродвигателя вентилятора, заедание термостата в закрытом положении, отложение большого количества накипи, сильное загрязнение наружной поверхности радиатора, неисправность выпускного (парового) клапана пробки радиатора или расширительного бачка, неисправность насоса ОЖ.
Заедание термостата в закрытом положении прекращает циркуляцию жидкости через радиатор. В этом случае двигатель перегревается, а радиатор остается холодным. Недостаточное количество ОЖ возможно в случае ее утечки или выкипания. Если уровень ОЖ понизился в результате выкипания – следует долить дистиллированной воды, если жидкость вытекла – доливается антифриз. Открывать пробку радиатора или расширительного бачка можно только когда ОЖ достаточно остынет (10-15 минут после остановки двигателя). В противном случае находящаяся под давлением ОЖ может выплеснуться и причинить ожоги. Вытекание жидкости происходит через неплотности в соединениях патрубков, трещин в радиаторе, расширительном бачке и рубашке охлаждения, при повреждении сальника насоса ОЖ, пробки радиатора или повреждении прокладки головки блока цилиндров. При эксплуатации автомобиля необходимо следить не только за уровнем, но и за состоянием антифриза. Если его цвет становится рыже-бурым, значит, детали системы уже коррозируют. Такой антифриз подлежит немедленной замене.
Переохлаждение двигателя может происходить из-за заедания термостата в открытом положении, а также при отсутствии утеплительных чехлов в зимнее время. Если закрытая система охлаждения негерметична, то повышенное давление в ней не создается и двигатель не прогревается до рабочей температуры. А раз двигатель не прогревается, ЭБУ постоянно обогащает смесь. Таким образом, негерметичная система охлаждения увеличивает расход топлива. Систематическая работа двигателя на обогащенной смеси приводит к разжижению масла, увеличению нагарообразования, быстрому выходу из строя каталитического нейтрализатора.

Выбор антифриза

Если у вас в дороге возникла неисправность, в результате которой уровень охлаждающей жидкости упал ниже допустимого, не расстраивайтесь. Долить можно любой антифриз или воду. Система охлаждения от этого хуже работать не станет. Кстати, не все современные автолюбители знают, что воду нужно заливать мягкую – она не образует накипи. Самая мягкая вода достается нам с неба в виде дождя или снега. А грунтовые воды из родников, колодцев и артезианских скважин категорически не рекомендуются для доливки в систему охлаждения – они образуют очень много накипи. Смягчить воду можно кипячением в течение 20-30 минут с последующим отстаиванием и фильтрованием. Жесткость воды в бытовых условиях легко оценить по пенообразованию при намыливании рук мылом: в мягкой воде пена устойчивая, а в жесткой пена быстро гаснет, и на руках остается сальный осадок. Как только экстренная ситуация, вынудившая вас долить «не ту» жидкость, минует, «коктейль» нужно слить, систему охлаждения промыть и залить «правильный» антифриз.
Выбор начинаем с бренда – известный вас не подведет. Далее находим обозначение класса антифриза. Вот здесь чаще всего возникают затруднения. Попробуем прояснить ситуацию. Основой любого антифриза является водный раствор этиленгликоля, который не расширяется при замерзании и не образует твердой сплошной массы. Но этиленгликоль коррозионно агрессивен к металлам. Для защиты деталей системы охлаждения от коррозии применяется три вида присадок: на основе силикатов, на основе солей органических кислот и смешанные (гибридные) добавки к антифризам. Первый рецепт – самый древний. Яркий пример – наш «Тосол», который лукавая реклама иногда позиционирует как антифриз, идеально подходящий для отечественных автомобилей. Выпадение силикатов в осадок приводит к закупориванию тонких трубок радиатора. Поэтому этот вариант покупки даже не рассматриваем. В англоязычном варианте такие антифризы называются: Conventional coolants, IAT (Inorganic Acid Technology) или Тraditional coolants.
Гибридные антифризы включают соли карбоновых кислот и небольшое количество силикатов или фосфатов. И хотя этот рецепт тоже свое отживает, но в течение трех лет эксплуатации обеспечивает достаточно приличную защиту от коррозии. Маркируются они: Нybrid coolants, HOAT (Hybrid Organic Acid Technology) или TL 774-C (G-11).
Более современные – карбоксилатные антифризы. В их составе отсутствуют неорганические присадки. Срок их службы – не менее 5 лет. Обозначаются надписями или символами: Carboxilate coolants, OAT (Organic Acid Technology, TL 774-F (G12+).
Несколько лет назад (в 2008 году) появился еще один вид антифриза, который в английском варианте обозначают Lobrid coolants, SOAT coolants или TL 774-G (G 12++). По составу они аналогичны карбоксилатным, но в них присутствует небольшое количество силикатов. Считается, что такой антифриз можно безболезненно смешивать с любым другим классом охлаждающих жидкостей.
Некоторые производители указывают на этикетке состав присадок, что также позволяет идентифицировать тип антифриза. Отсутствие аминов, боратов, нитритов, силикатов и фосфатов говорит о том, что антифриз – карбоксилатный. Гибридные также не должны содержать ничего из этого списка, кроме силикатов, но их количество не должно превышать 500 мг/л.
Хорошим признаком, подтверждающим несомненное качество антифриза, является надпись об одобрении автопроизводителей с номерами допусков. Такие допуска выдаются только после длительных испытаний жидкости на автомобилях указанной марки. Правдивость надписи на этикетке можно легко проверить, зайдя на официальный сайт автопроизводителя.
А вот заявления типа «Соответствует спецификациям…» или «Отвечает требованиям…» - не более, чем обещания изготовителя антифриза, но не гарантия качества. Особенно это касается маркировок G11, G12+, G12++. Она введена концерном WV только для одобренных им жидкостей. Но так как у нас такие обозначения получили большое распространение, то некоторые производители указывают их на этикетках, не имея на это полного права. То есть, антифриз может оказаться и хорошим, а может и не очень – рулетка. Больше доверия в таких случаях заслуживают известные марки, о чем уже упоминалось выше.
Надпись «Совместим со всеми…» лишь подтверждает то, о чем говорилось в начале статьи. Если по каким-то параметрам антифриз не подходит вашему двигателю, то его можно безболезненно использовать только для доливки.
Антифриз может продаваться в виде концентрата или уже готовым для заливки. Что выбрать – зависит от климата той местности, где вы проживаете, и вашего желания возиться с машиной. Например, если зимы теплые, к чему заливать 40 – градусный состав? Лучше купить концентрат и разбавить его дистиллированной водой до нужной консистенции (пропорции для разных температур указаны на этикетке).
И последнее – цвет антифриза. Это свойство не играет абсолютно никакой роли. Сама по себе жидкость бесцветна и производитель при желании может раскрасить ее во все цвета радуги. А устойчивое заблуждение, что G11, G12+ или G12++ можно идентифицировать по одному лишь цвету, исходит от непрофессиональных реализаторов.

2 года

Насос системы охлаждения двигателя является очень важным элементом любого современного автомобиля.

Для чего нужен этот насос?

Насос охлаждающей жидкости – это механизм, предназначенный для обеспечения принудительной циркуляции в системе охлаждения двигателя. Такая помпа обычно располагается на минимальном расстоянии от передней части блока цилиндров и его головки, отвечая за приведение в движение жидкости, которая отводит тепло от блока цилиндров двигателя, предотвращая тем самым его перегрев.

Принцип работы насоса в системе охлаждения


Несмотря на большую важность функции охлаждения мотора, принцип работы помпы довольно прост. Чтобы его понять, необходимо уяснить один момент: модели насосов хоть и различаются в зависимости от марки автомобилей, на которых они установлены, однако их всех объединяет наличие трех обязательных конструктивных элемента. Это:

  • литой корпус, который чаще всего выполнен из магниевого сплава;
  • стальной вал с насаженной на него крыльчаткой из алюминиевого сплава или полимерных материалов;
  • сальник, обеспечивающий герметичность камеры насоса.

Сам вал имеет подшипник, который исключает появление вибраций на больших оборотах. Крыльчатку насоса еще иногда по-другому называют рабочим колесом. Когда с помощью вала оно приводится в движение, у входного отверстия насоса образуется разряженное пространство, благодаря которому на центральную часть крыльчатки производится подача охлаждающей жидкости. Далее, под воздействием центробежной силы она разбрасывается по стенкам камеры, набирая при этом довольно высокую скорость. За счет этого осуществляется выход жидкости под некоторым давлением и ее поступление в водяную «рубашку» мотора (систему полостей в стенках головки блока цилиндров и в самом блоке).

На многих авто в системе охлаждения применяются сразу два насоса. Дополнительная помпа требуется для обеспечения циркуляции охлаждающей жидкости во втором контуре (на двигателях с турбиной), а также для охлаждения выхлопных газов и воздушной смеси в турбокомпрессоре.

Типы насосов охлаждающей жидкости


На современных авто используются только центробежные лопастные насосы, которые представляют собой оптимальные механизмы для прокачки жидкостей с малой вязкостью и плотностью. Различаются они только по типу привода, который приводит в движение стальной вал с крыльчаткой.

Виды приводов:

  • От коленчатого вала. Передача усилия в этом случае осуществляется с помощью клиноременной передачи. Обычно она одновременно приводит в движение и вентилятор радиатора, и ротор генератора, а крепление ремня производится непосредственно к шкиву в передней части коленвала.
  • От ремня ГРМ. Передача усилия происходит через зубчатый ремень.
  • От собственного электрического моторчика. Обычно данный тип привода применяется на дополнительных насосах.

Жидкость для охлаждения – как правильно выбрать?


Сегодня на рынке представлено огромное число охлаждающих жидкостей различных марок. Все они различаются по количеству и качеству присадок и добавок, но с точки зрения основных компонентов состава существует всего 3 класса жидкостей для охлаждения двигателя:

  • G11. Для их изготовления применяется этиленгликоль, а упаковки помечаются маркировкой зеленого цвета.
  • G12. Жидкости на основе все того же этиленгликоля, но со значительным содержанием карбоксилатных соединений. Этому классу соответствует маркировка красного цвета. Являются оптимальным вариантом для высокооборотных двигателей, а также моторов, которые подвергаются регулярному воздействию высоких температур.
  • G13. Жидкости этого класса изготавливаются на основе полипропиленгликоля и являются наиболее экологичными, безопасными для здоровья человека, но при этом и самыми дорогими. Помечаются маркировкой оранжевого либо желтого цвета.

При покупке жидкости для охлаждения нужно обратить внимание на этикетку и сертификаты, которые должны в обязательном порядке прилагаться к продукции. Их отсутствие у продавца должно насторожить, и в этом случае лучше отказаться от покупки антифриза. Ведь некачественная охлаждающая жидкость не только может привести к поломке двигателя, но и серьезным проблемам со здоровьем, что намного страшнее.

Различия между Антифризом и Тосолом


Большинство автолюбителей разделяют охлаждающие жидкости на 2 группы: антифриз и тосол. Однако это заблуждение, таким же образом можно сравнивать сельдь с рыбой или картофель с овощем. Ведь «тосол», ставшее уже нарицательным словом, обозначает жидкость для охлаждения, состоящую из специально подготовленной воды и этиленгликоля (т. е. относящуюся к классу G11), а была она изобретена еще в 70-х годах прошлого века советскими учеными для работы в условиях Крайнего Севера.

В то время это слово являлось торговой маркой и писалось вот так: ТОСОЛ. Первые три буквы в этом сочетании обозначают технологию органического синтеза, а окончание «-ол» - отношение к классу спиртосодержащих жидкостей, так как этиленгликоль – это не что иное, как представитель двухатомных спиртов. Таким образом, все охлаждающие жидкости правомерно называть антифризом, а никак не тосолом!

Если на этикетке и в сертификате есть отметка о соответствии ГОСТ 28084-89, то такую жидкость можно смело приобретать. Однако в последнее время многие производители антифриза добавляют в свою продукцию множество присадок для уменьшения себестоимости и повышения качества. Такая жидкость на этикетке будет иметь пометку только о соответствии ТУ, в которых она изготавливалась. Это не значит, что данный антифриз некачественный, просто перед его покупкой стоит убедиться в его безопасности, например, изучив отзывы других автолюбителей на онлайн-форумах.

Диагностика неисправностей насоса охлаждающей жидкости


Как показывает практика, многих поломок двигателя можно избежать или хотя бы отсрочить их появление, если вовремя диагностировать неисправности насоса охлаждающей жидкости. Это вполне по силам даже совсем неопытному автолюбителю.

Самыми распространенными неполадками в работе охлаждающей помпы выступают:

  • износ приводного ремня;
  • повреждения крыльчатки;
  • износ подшипников;
  • разгерметизация рабочей полости.

Наиболее явным признаком, сигнализирующим о неисправности помпы, является перегрев двигателя. Причиной его могут быть все вышеназванные неполадки, кроме износа подшипников. А вот повышенный уровень шума как раз может быть его следствием. Также это может быть сигналом неправильной установки крыльчатки. Выявить же разгерметизацию поможет ежедневный визуальный осмотр корпуса помпы на предмет наличия протечек, что не займет много времени. Осмотр же ремня стоит осуществлять каждые 7-10 дней.

Средняя стоимость ремонта насоса в автомастерских


Конечная стоимость ремонта насоса охлаждающей жидкости напрямую зависит от марки авто, а также местоположения автосервиса. Средние же цены на услуги по замене и ремонту помпы охлаждения на некоторых наиболее распространенных в СНГ марках авто на сегодняшний день таковы:

Также довольно востребованной у автовладельцев услугой является замена охлаждающей жидкости. Ее стоимость обычно не зависит от марки машины, минимальная же сумма, которую необходимо иметь в наличии при посещении СТО, равняется 700 российским рублям.

Все цены указаны без учета стоимости заменяемых деталей и расходных материалов.

Средняя цена на насос охлаждающей жидкости

Средняя розничная стоимость новых помп охлаждающей жидкости в перерасчете на российскую валюту на ряд популярных марок грузовых и легковых авто составляет:

  • ВАЗ 2101–2115 – от 800 р.;
  • LADA Priora/Kalina/Granta – от 950 р.;
  • LADA Largus/Niva Chevrolet – от 1 000 р.;
  • ГАЗ 3302/2217/3221/3102/3110/31105 – от 1 500 р.;
  • ГАЗ 53/66/3307 – от 2 000 р.;
  • УАЗ 3303/3909/Patriot/Hunter – от 1 400 р.;
  • ГАЗ 33025/33027/ Business – от 1750 р.;
  • ПАЗ 4230/4234/3205/3206 – от 2 000 р.;
  • ZAZ-Daewoo Sens/Tavria/Slavuta – от 1 100 р.;
  • KAMAZ 5315/5320/53212/5411/555112/55102/55111– от 5 500 р.;
  • MAZ 4370/4371 – от 2 100 руб.;
  • ЗИЛ 130/131/ 4331/4333/4421/4945 – от 5 000 р.;
  • VOLKSWAGEN Golf III, IV/Polo/Bora/Passat – от 2 000 р.;
  • HYUNDAI Accent/Solaris/Getz/Elantra/Avante XD – от 1 550 р.;
  • HYUNDAI Matrix/Santa Fe/Tucson – от 1 700 р.;
  • OPEL Astra J/Insignia/Astra G/Zafira A/Astra H – от 1 500 р.;
  • KIA Rio/Cerato/Cerato/Carens/Magentis I/CEE’D – от 1 500 р.;
  • KIA Sportage – от 1 700 р.;
  • SCODA Octavia/Octavia Tour/Octavia II/Rapid/Roomster/Yeti – от 1 600 р.;
  • FORD Focus II,III/Fiesta/Fusion/C-Max – от 1 850 р.;
  • RENAULT Logan/Kangoo/Clio II/Clio Symbol/Megane II – от 1 450 р.;
  • TOYOTA Corolla/Avensis/Carina E/Yaris – от 1 500 р.;
  • HONDA Accord – от 2 400 р.;
  • SUBARU Impreza /Legacy/Forester 2.0, 2.5 – от 1 850 р.;
  • MITSUBISHI Colt/Lancer/Galant 1.6, 1.8 – от 1 350 р.;
  • MITSUBISHI Pajero II, IV – от 2 900 р.;
  • NISSAN Micra/Note/Tiida – от 1 550 р.;
  • NISSAN X-Trail/Primera 2.0, 2.5 – от 2 750 р.;
  • MERCEDES BENZ W202/210 – от 6 000 р.;
  • MERCEDES BENZ W124/W201 – от 1 900 р.;
  • MERCEDES BENZ W115/W123/W460 — от 1 650 р.;
  • AUDI 80/90/100 – от 1 800 р.;
  • AUDI A4/A6/A8 – от 2 200 р.;
  • BMWE 23/E24/E32/E34 – от 1 700 р.;

Когда помпа выходит из строя, зачастую это случается неожиданно, ремонт и последствия этой неполадки застают автовладельцев врасплох. Именно поэтому каждому автомобилисту следует знать о самых основных показателях выхода из строя этого узла, так как знания в данном вопросе помогут вам избежать неприятностей, связанных с ремонтом автомобиля.

Итак, какими могут быть признаки неисправности помпы?

Первым делом, о неисправности помпы (насоса системы охлаждения) свидетельствует наличие люфта шкива. А уже появление люфта – признак износа подшипников. Определить эту неисправность можно по характерному звуку (рокоту), который раздается во время работы движка авто. Подтвердить свои догадки можно достаточно просто – покачайте шкив рукой, люфт будет при этом явно выражен. Если вы выявили люфт шкива, то в обязательном порядке следует обратиться за консультацией к специалистам.


Далее, нужно проконтролировать, в каком состоянии находится дренажное отверстие, расположенное в нижней части корпуса наноса. При обнаружении на срезе дренажного отверстия даже небольшого количества капелек, не говоря уже о явной течи, нужно насторожиться, ведь это уже признак того, что уплотнение стало совершенно непригодным. Использовать авто в данном случае не рекомендуется, так как появившаяся течь обязательно будет увеличиваться. Следует устранить данную проблему, и не народными способами, вроде затыкания дренажного отверстия чопиком из дерева, а, как положено, заменив необходимые детали на новые.


Еще необходимо снять со шкивов ремень генератора и покачать каждый натяжной и обводной ролик. Заменить подшипники необходимо, если вы выявите затрудненность вращения даже одного из них. Сняв ремень, следует изучить его состояние: наличие дефектов, расслоений и трещин говорит о том, что ремень нужно заменить, о том, как это сделать, читайте . Новый же ремень должен быть , так как если ремень натянут будет слабовато – он быстро выйдет из строя, попросту «сгорев», а если ремень будет перетянут – он может разрушить подшипники и другие механизмы, которые с ним сопряжены.

Как видите, основные признаки неисправности помпы всегда на лицо, поэтому определить их будет несложно. Другое дело – это ее ремонт, которым не следует заниматься самостоятельно, особенно, если вы не обладаете достаточными знаниями и опытом. Решать данную проблему должны только специалисты.

Видео.

Для работы жидкостной системы охлаждения двигателя необходимо обеспечить постоянную циркуляцию охлаждающей жидкости. Данная задача решается с помощью водяного насоса или помпы — все об этих агрегатах, их типах, конструкции и работе, а также об их правильном выборе, ремонте и замене читайте в статье.

Что такое водяной насос?

(жидкостный насос, помпа) — компонент системы жидкостного охлаждения двигателей внутреннего сгорания; циркуляционный насос, обеспечивающий принудительное обращение охлаждающей жидкости по контурам системы.

Подавляющее большинство современных автомобильных, тракторных и иных двигателей имеет жидкостную систему охлаждения — в такой системе теплоносителем, обеспечивающим отбор тепла от наиболее нагретых деталей силового агрегата, выступает вода или антифризы. Наибольшая эффективность системы достигается при принудительной циркуляции теплоносителя — именно с этой целью используются циркуляционные водяные насосы (помпы). Такой насос устанавливается на двигатель и обеспечивает постоянную циркуляцию жидкости по всем контурам системы охлаждения.

Водяной насос играет важную роль в работе силового агрегата, выход насоса из строя в считанные минуты приводит к перегреву двигателя и может стать причиной серьезных поломок. Поэтому при неисправностях насос необходимо ремонтировать или менять, а чтобы сделать верный выбор, необходимо разобраться в существующих типах помп, их конструкции и принципе работы.

Типы и конструкция водяных насосов



Все современные автомобильные водяные помпы являются насосами центробежного типа, они нагнетают охлаждающую жидкость в систему с помощью вращающегося многолопастного колеса (крыльчатки). В таком насосе крыльчатка находится в замкнутой полости с двумя патрубками: подводящим над центром крыльчатки и нагнетательным на периферии. Охлаждающая жидкость поступает на среднюю часть крыльчатки и отбрасывается ее лопастями на периферию, приобретает ускорение и через нагнетательный патрубок подается в водяную рубашку двигателя. Так между подводящим и нагнетательным патрубками насоса создается разность давлений, обеспечивающая циркуляцию охлаждающей жидкости по системе.

Обычно насос встраивается в систему охлаждения между выпускным патрубком радиатора и впускным патрубком водяной рубашки двигателя. То есть, через помпу проходит уже охлажденная в радиаторе жидкость, благодаря чему на агрегат снижается тепловая нагрузка и продлевается его ресурс.

Конструкция водяного насоса в общем случае проста. Основу агрегата составляет литой корпус с патрубками (подводящим и нагнетающим), внутри которого на валу расположена крыльчатка. Вал крыльчатки удерживается одним или двумя подшипниками в передней стенке корпуса, вся конструкция уплотняется самоподжимным сальником, препятствующим проникновению охлаждающей жидкости в подшипник и ее утечку из корпуса насоса. Сальник имеет пружину, за счет чего он всегда прижат к корпусу насоса и обеспечивает необходимую степень герметичности. Также внутри может располагаться водоотражатель, препятствующий попаданию воды на подшипники изнутри. Снаружи на валу крыльчатки располагается ступица шкива привода насоса, на который может крепиться и вентилятор. На шкиве или на валу со стороны передней стенки корпуса насоса может располагаться пылеотражатель, препятствующий проникновению пыли в подшипник.

Существующие сегодня помпы отличаются конструкцией крыльчатки и корпуса, способом установки на двигатель, типом привода и наличием/отсутствием привода вентилятора охлаждения радиатора.


В помпах используются крыльчатки двух основных типов:

  • Дисковые — крыльчатка конструктивно выполнена в виде плоского диска, на одной поверхности которого расположены прямые или спиральные лопасти;
  • Кольцевые — крыльчатка выполнена в виде двух дисков, между которыми расположены прямые или спиральные лопасти.

Наиболее широкое применение находят дисковые крыльчатки с лопастями различных типов. Кольцевые крыльчатки применяются реже вследствие более сложной конструкции и высокой массы. Дисковые крыльчатки могут быть литыми и штампованными, кольцевые — литыми и сварными (собранными из отдельных компонентов).

По конструкции корпуса и способу установки на двигатель жидкостные насосы бывают:

  • Интегрированные в блок двигателя;
  • Корпусные (автономные).

Насосы первого типа имеют корпус, открытый со стороны крыльчатки — вторую часть корпуса составляет полость в блоке двигателя. Такой насос монтируется непосредственно на двигатель (через прокладку на специально обработанную привалочную поверхность), он занимает мало места и требует выполнения минимального числа соединений, так как нагнетательный патрубок обычно интегрирован в корпус и блок. Именно насосы, интегрированные в блок двигателя, сегодня получили наибольшее распространение.

Насосы второго типа выполнены в виде автономных агрегатов, которые соединяются с системой охлаждения патрубками. Эти насосы тоже устанавливаются на блок двигателя (на привалочную поверхность или на отдельные кронштейны), однако занимают больше места, чем насосы первого типа. В остальном корпусные и интегрированные насосы не имеют принципиальных отличий.

Водяные насосы могут иметь привод двух основных типов:

  • Ремнем/цепью ГРМ;
  • Ремнем привода вспомогательных агрегатов.

В первом случае на насос устанавливается зубчатый шкив (для зубчатого ремня) или звездочка (для цепи), во втором случае используется шкив для обычного клинового или поликлинового ремня. Сегодня используются все типы приводов, однако наибольшее распространение получили насосы с приводом от ремня ГРМ и поликлинового ремня. На ранних двигателях (особенно дизельных) все еще используются клиноременные передачи с одиночными, спаренными, строенными и счетверенными ремнями.

Наконец, шкив привода водяного насоса может использоваться для установки вентилятора охлаждения. Вентилятор может монтироваться на шкив непосредственно (жестко) или через вязкостную муфту, в первом случае вентилятор работает постоянно (так как насос имеет постоянный привод), во втором случае вентилятор включается в работу только в определенном диапазоне температур.

Вопросы выбора, ремонта и замены водяных насосов

Имеет ограниченный ресурс, который редко превышает 80-90 тысяч км пробега, поэтому данный агрегат необходимо периодически менять. Для замены необходимо выбирать помпу того же типа и модели, что стояла на двигателе ранее, в противном случае агрегат просто не встанет на свое место или будет работать некорректно. Допускается установка аналогов, однако далеко не для всех автомобилей это возможно.

На многих современных двигателях с приводом насоса ремнем ГРМ замена данного агрегата выполняется одновременно с заменой ремня и его роликов при регламентированном ТО. Это сделано с целью минимизации вмешательства в работу привода газораспределительного механизма — все детали меняются сразу, и система нормально работает весь межсервисный интервал. Для таких двигателей предлагаются полные ремонтные комплекты — ремень ГРМ, его ролики, водяная помпа, уплотнители и крепеж.

При покупке нового водяного насоса необходимо приобретать и прокладку — обычно она идет в комплекте, хотя в ряде случаев уплотнители можно найти отдельно. Для интегрированных в блок насосов необходима одна прокладка, для корпусных насосов может потребоваться несколько прокладок для каждой привалочной поверхности.

В случае, если насос не выработал свой ресурс, но в нем возникли неисправности (утечки, поломка или деформация крыльчатки, износ подшипников и т.д.), допускается выполнение ремонта. Наиболее частая проблема — износ самоподжимного сальника и утечка через него охлаждающей жидкости. Эта неисправность устраняется заменой сальника в сборе, отремонтировать данную деталь, как правило, невозможно. При поломке корпуса или крыльчатки насос проще заменить на новый.

При правильном выборе и замене водяного насоса система охлаждения двигателя будет безотказно работать в любых условиях эксплуатации.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама