THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Выше были рассмотрены условия работы электропривода в установившемся режиме, когда момент, развиваемый двигателем, равен моменту сопротивления механизма и скорость привода является постоянной. Однако во многих случаях привод ускоряется или замедляется, и тогда возникает инерционная сила или инерционный момент, которые двигатель должен преодолевать, находясь в переходном режиме. Таким образом, переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток.

Причинами возникновения переходных режимов в электроприводах является либо изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т. е. пуск, торможение, изменение направления вращения и т. п. Переходные режимы в электроприводах могут возникнуть также в результате аварий или нарушения нормальных условий электроснабжения (например, изменения напряжения или частоты сети, несимметрия напряжения и т. п.).

Уравнение движения электропривода должно учитывать все силы и моменты, действующие в переходных режимах.

При поступательном движении движущая сила всегда уравновешивается силой сопротивления машины и инерционной силой , возникающей при изменениях скорости. Если масса тела выражена в килограммах, а скорость – в метрах в секунду, то сила инерции, как и другие силы, действующие в рабочей машине, измеряются в ньютонах (кг·м·с -2).

В соответствии с изложенным уравнение равновесия сил при поступательном движении записывается так:

. (2.14)

Аналогично уравнение равновесия моментов, Н·м, для вращательного движения (уравнение движения привода) имеет следующий вид:

. (2.15)

Уравнение (2.15) показывает, что развиваемый двигателем вращающий момент уравновешивается моментом сопротивления на его валу и инерционным или динамическим моментом . В (2.14) и (2.15) принято, что масса тела и соответственно момент инерции привода являются постоянными, что справедливо для значительного числа производственных механизмов. Из анализа (2.15) видно:

1) при , т. е. имеет место ускорение привода;

2) при , т.е. имеет место замедление привода (очевидно, что замедление привода может быть и при отрицательном значении момента двигателя);

3) при , в данном случае привод работает в установившемся режиме.

Вращающий момент, развиваемый двигателем при работе, принимается положительным, если он направлен в сторону движения привода. Если он направлен в сторону обратную движению, то он считается отрицательным. Знак минус перед , указывает на тормозящее действие момента сопротивления, что отвечает усилию резания, потерям трения, подъему груза, сжатию пружины и т. п. при положительном знаке скорости.

При спуске груза, раскручивании или разжатии пружины и т. п. перед ставится знак плюс, поскольку в этих случаях момент сопротивления помогает вращению привода.

Инерционный (динамический) момент (правая часть уравнения моментов) проявляется только во время переходных режимов, когда изменяется скорость привода. При ускорении привода этот момент направлен против движения, а при торможении он поддерживает движение. Инерционный момент как по значению, так и по знаку определяется алгебраической суммой моментов двигателя и момента сопротивления.

При учете сказанного о знаках моментов формула (2.15) соответствует работе двигателя в двигательном режиме при реактивном моменте сопротивления (или при потенциальном тормозящем моменте сопротивления). В общем виде уравнение движения привода может быть записано следующим образом:

. (2.16)

Выбор знаков перед значениями моментов в (2.16) зависит от режима работы двигателя и характера моментов сопротивления.

Механическая часть эл. привода представляет собой систему твердых тел, движущихся с различными скоростями. Уравнение движения ее можно определить на основе анализа запасов энергии в системе двигатель – рабочая машина, или на основе анализа второго закона Ньютона. Но наиблее общей формой записи диф. уравнений, определяющих движение системы, в которой число независимых переменных равно числу степеней свободы системы, является уравнение Лагранжа:

Wk – запас кинетической энергии; – обобщенная скорость; qi – обобщенная координата; Qi – обобщенная сила, определенная суммой элементарных работ DAi всех действующих сил на возможных перемещениях Dqi:

При наличии в системе потенциальных сил формула Лагранжа принимает вид:

2) , где

L=Wk-Wn функция Лагранжа, равная разности запасов кинетической Wk и потенциальной энергии Wn.

В качестве обобщенных координат, т. е. не зависимых переменных, могут быть приняты как различные угловые, так и линейные перемещения в системе. В трехмассовой упругой системе за обобщение координаты целесообразно принять угловое перемещение масс j1,j2,j3 и соответствующие им угловые скорости w1, w2, w3.

Запас кинетической энергии в системе:

Запас потенциальной энергии деформации упругих элементов, подвергающихся скручиванию:

Здесь М12 и М23 – моменты упругого взаимодействия между инерционными массами J1 и J2, J2 и J3, зависящие от величины деформации j1-j2 и j2-j3.

На инерционную массу J1 действуют моменты М и Мс1. Элементарная работа приложенных к J1 моментов на возможном перемещении Dj1.

Следовательно, обобщенная сила .

Аналогично элементарная работа всех приложений ко 2-й и 3-й массам моментам на возможных перемещениях Dj2 и Dj3: , откуда

, откуда

Т. к. ко 2-й и 3-й массам электромагнитный момент двигателя не приложен. Функция Лагранжа L=Wk-Wn.

Учитывая значения Q1`,Q2`и Q3` и подставив их в уравнение Лагранжа, получим уравнения движения трехмассовой упругой системы

Здесь 1-е уравнение определяет движение инерционной массы J1, 2-е и 3-е движение инерционных масс J2 и J3.

В случае двухмассовой системы Мс3=0; J3=0 уравнения движения имеют вид:

В случае жесткого приведенного механического звена ;

Уравнение движения имеет вид

Это уравнение является основным уравнением движения эл. привода.

В системе эл. привода некоторых механизмов содержится кривошипно – шатунные, кулисные, карданные передачи. Для таких механизмов радиус приведения “r” непостоянен, зависит от положения механизма, так для кривошипно шатунного механизма, изображенного на рис.

Получить уравнение движения в этом случае можно также на основе формулы Лагранжа или на основе составления энергетического баланса системы двигатель – рабочая машина. Воспользуемся последним условием.

Пусть J –суммарный приведенный к валу двигателя момент инерции всех жестко и линейно связанных вращающихся элементов, а m – суммарная масса элементов жестко и линейно связанных с рабочим органом механизма, движущаяся со скоростью V. Связь между w и V нелинейна, причем . Запас кинетической энергии в системе:

Т. к. , и .

Здесь - суммарный приведенный к валу двигателя момент инерции системы.

Динамическая мощность:

Динамический момент:

Или т. к. , то

Полученные уравнения движения позволяют анализировать возможные режимы движения эл. привода как динамической системы.

Возможны 2 режима (движения) электропривода: установившийся и переходный, причем установившийся режим может быть статическим или динамическим.

Установившийся статический режим эл. привода с жесткими связями имеет место в случае, когда , , . Для механизмов, у которых Мс зависит от угла поворота (например, кривошипно-шатунных), даже при и статический режим отсутствует, а имеет место установившийся динамический режим.

Во всех остальных случаях, т. е. при и имеет место переходный режим.

Переходным процессом эл. привода как динамической системы называют режим его работы при переходе от одного установившегося состояния к другому, когда изменяется ток, момент и скорость двигателя.

Переходные процессы всегда связаны с изменением скорости движения масс электропривода, поэтому всегда являются динамическими процессами.

Без переходного режима не совершается работа ни одного эл. привода. Эл. привод работает в переходных режимах при пуске, торможении, изменении скорости, реверсе, свободном выбеге (отключение от сети и движении по инерции).

Причинами возникновения переходных режимов являются или воздействия на двигатель с целью управления им изменением подводимого напряжения или его частоты, изменением сопротивления в цепях двигателя, изменение нагрузки на валу, изменение момента инерции.

Переходные режимы (процессы) возникают также в результате аварии или др. случайных причин, например, при изменении величины напряжения или его частоты, обрыве фаз, возникновении не симметрии питающего напряжения и т. п. Внешняя причина (возмущающее воздействие) является только внешним толчком, побуждающим эл. привод к переходным процессам.

Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.

Сначала рассмотрим механическую часть как абсолютно жесткую механическую систему. Уравнение движения такой системы:

Передаточная функция

Структурная схема механической части в этом случае, как следует из уравнения движения, имеет вид, изображенный на рис.

Изобразим ЛАЧХ и ЛФЧХ этой системы. Т. к. звено с передаточной функцией является интегрирующим, то наклон ЛАЧХ – 20 дб/дек. При приложении нагрузки Mc=const скорость в такой системе нарастает по линейному закону и если М=Мс не ограничить, то она возрастает до ¥. Сдвиг между колебаниями М и w, т. е. между выходной и входной величиной постоянен и равен .

Расчетная схема двухмассовой упругой механической системы, как было показано ранее, имеет вид, изображенный на рис.

Структурная схема этой системы может быть получена на основе уравнений движения ; ;

Передаточные функции

.


Структурная схема, соответствующая этим управлениям, имеет вид:

Для исследования свойств этой системы как объекта управления принимаем МС1=МС2=0 и выполним синтез по управляющему воздействию. Используя правила эквивалентного преобразования структурных схем, можно получить передаточную функцию ,связывающую выходную координату w2 , с входной, которой является w1 и передаточную функцию при выходной координате w1.

;

Характеристическое уравнение системы: .

Корни уравнения: .

Здесь W12 – резонансная частота свободных колебаний системы.

Наличие мнимых корней свидетельствует о том, что система находится на грани устойчивости и если ее толкнуть, то она затухать не будет и на частоте W12 возникает резонансный пик.

Обозначив ; , где

W02 – резонансная частота 2-й инерционной массы при J1 ®¥.

С учетом этого передаточные функции , и будут иметь вид:

Ей соответствует структурная схема:

Для анализа поведения системы построим ЛАХЧ и ЛФЧХ механической части как объекта управления, сначала при выходной координате w2, заменив в выражении Ww2(r) R на jW. Они изображены на рис.

Из него следует, что в системе возникают механические колебания, причем число колебаний доходят до 10-30. При этом колебательность инерционной массы J2 выше, чем Массы J1. При W>W12 наклон высокочастотной асимптоты L(w2) равен – 60 дб./дек. И нет факторов, которые ослабляли бы развитие резонансных явлений при любом . Следовательно, когда важно получить требуемое качество движения инерционной массы J2, а также при регулировании координат системы, пренебрегать влиянием упругости механических связей без предварительной проверки нельзя.

В реальных системах имеется естественное демпфирование колебаний, которое, правда существенно не сказывается на форме ЛАХЧ и ЛФЧХ, однако ограничивает резонансный пик конечным значением, как показано пунктиром на рис.

Для анализа поведения системы при выходной координате w1 также построим ЛАХЧ и ЛФХЧ механической части как объекта управления. Структурная схема, вытекающая из передаточной


функции имеет вид:

Частотные характеристики приведены ниже:

Движение инерционной массы J1, как следует из характеристики и структурной схемы, при небольших частотах колебаний упругого взаимодействия определяется суммарным моментом инерции , причем механическая часть ведет себя как интегрирующее звено, т. к. характеристика L(w1) асимптотически приближается к асимптоте, имеющий наклон – 20 дб/дек. При M=const скорость w1 изменяется по линейному закону, на который накладываются колебания, обусловленные упругой связью. При приближении частоты колебаний момента М к W12 амплитуда колебаний скорости w1 возрастает и при W=W12 стремиться к бесконечности. Отсюда следует, что чем ближе к 1, т. е. при J2< можно считать как функцию интегрирующего звена (в структурной схеме во втором звене числитель и знаменатель выражения сократятся) и механическую часть эл. привода можно рассматривать как абсолютно жесткое механическое звено.

При g>>1, т. е. J2>J1 и если частота среза , механическую часть эл. привода также можно считать абсолютно жесткой (С12=бесконечности).

Как уже сказано выше, обычно g=1,2¸1,6, но вообще то g=1,2¸100. Величина 100 характерна для редукторных тихоходных электроприводов, например, для механизма поворота стрелы шагающего экскаватора с емкостью ковша 100м3 и длиной стрелы 100м.

Когда момент, развиваемый двигателем, равен моменту сопротивления исполнительного органа, скорость привода постоянна.

Однако во многих случаях привод ускоряется или замедляется, т.е. работает в переходном режиме.

Переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток.

Причинами возникновения переходных режимов в электроприводах является изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т.е. пуск, торможение, изменение направления вращения и т.п., а также нарушение работы системы электроснабжения.

Уравнение движения электропривода должно учитывать все моменты, действующие в переходных режимах.

В общем виде уравнение движения электропривода может быть записано следующим образом :

При положительной скорости уравнение движения электропривода имеет вид

Уравнение (2.10) показывает, что развиваемый двигателем вращающий момент уравновешивается моментом сопротивления и динамическим моментом . В уравнениях (2.9) и (2.10) принято, что момент инерции привода является постоянным, что справедливо для значительного числа исполнительных органов.

Из анализа уравнения (2.10) видно:

1) при > , , т.е. имеет место ускорение привода;

2) при < , , т.е. имеет место замедление привода (очевидно, замедление привода может быть и при отрицательном значении момента двигателя);

3) при = , ; в данном случае привод работает в установившемся режиме.

Динамический момент (правая часть уравнения моментов) проявляется только во время переходных режимов, когда изменяется скорость привода. При ускорении привода этот момент направлен против движения, а при торможении он поддерживает движение.

3.Понятие о статической устойчивости работы привода.

Под статической устойчивостью, вообще говоря, понимают способность системы самостоятельно восстановить исходный режим работы при малом возмущении. Статическая устойчивость является необходимым условием существования установившегося режима работы системы, но отнюдь не предопределяет способности системы продолжать работу при резких наруше­ниях режима, например при коротких замыканиях.

Рис3.1 – Изменение мощности при приращениях угла.

Итак, точка а и, любая другая точка на возрастающей части синусои­дальной характеристики мощности отвечают статически устойчивым режи­мам и, наоборот, все точки падающей части характеристики - статически неустойчивым. Отсюда вытекает следующий формальный признак статической устойчивости рассмотренной простейшей системы: при­ращения угла и мощности генератора Р должны иметь один и тот же знак, т. е. или, переходя к пределу:



Она положительна при < 90° (рис. 3.3). В этой области и возможны устойчивые установившиеся режимы работы системы. Критическим с точки зрения устойчивости в рассматриваемых условиях (при чисто индуктивной связи генератора с шинами приемной системы) является значение угла = 90°, когда достигается максимум характеристики мощности.

Для проектирования электропривода необходимо знать кинематику и эксплуатационные условия рабочей машины. Нагрузка на валу электродвигателя слагается из статической и динамической нагрузок. Первая обусловливается полезными и вредными сопротивлениями движению (от сил трения, резания, веса и т. п.); вторая возникает применениях кинетической энергии в системе привода вследствие изменения скорости движения тех или иных частей устройства. В соответствии с этим момент, развиваемый двигателем,

В этом выражении М ст - статический момент, обусловленный силами полезных и вредных сопротивлений. Он может не зависеть от частоты вращения (рис. 16.2, прямая 1), если создается трением, силами сопротивления при резании металла и т. п., или может в какой-то степени зависеть от частоты вращения. Например, у центробежного насоса, питающего систему с постоянным напором, статический момент складывается из постоянной составляющей и составляющей, пропорциональной квадрату частоты вращения (рис. 16.2, кривая 2). Момент может зависеть от скорости линейно (3) и нелинейно (4).

Входящая в уравнение моментов (16.1) величина

называется динамическим моментом. Этот момент может быть как положительным, так и отрицательным.

Величина J, которой M ДИН пропорционален, называется моментом инерции. Это - взятая для всего тела сумма произведений масс m k отдельных частиц тела на квадрат расстояния R k соответствующей частицы от оси вращения:

Обычно момент инерции удобно выразить как произведение массы тела на квадрат радиуса инерции R ин т. е.

где R ин - расстояние от оси вращения, на котором нужно сосредоточить в одной точке всю массу тела, чтобы получить момент инерции, равный фактическому при распределенной массе. Радиусы инерции простейших тел указываются в справочных таблицах.

Вместо момента инерции в расчетах приводов применялось понятие махового момента - величины, связанной с моментом инерции простым соотношением:



где G - вес тела; D = 2R ин - диаметр инерции; g - ускорение силы тяжести; GD 2 - маховой момент.

Моменты инерции роторов и якорей электродвигателей обычно указываются в каталогах. Желательно, чтобы приводной электродвигатель был соединен с рабочим органом рабочей машины (например, с резцом) непосредственно, без каких-либо промежуточных зубчатых или ременных передач. Однако в большом числе случаев это неосуществимо из-за того, что рабочий орган должен иметь относительно небольшую частоту вращения (50-300 об/мин) при высокоскоростном электродвигателе. Изготовлять специальный тихоходный электродвигатель невыгодно. Он будет иметь слишком большие габариты и массу. Рациональнее с тихоходным приводом соединить через редуктор нормальный электродвигатель (750-3000 об/мин).

Но при расчетах сложной системы привода с вращательными или" поступательными движениями и различными скоростями отдельных ее элементов целесообразно заменить ее приведенной системой - упрощенной системой, состоящей из одного элемента, вращающегося с частотой электродвигателя. При переходе к приведенной системе от действительной моменты в системе пересчитываются таким образом, чтобы остались неизменными энергетические условия.

Например, двигатель, угловая скорость вала которого ω дв, соединен через одноступенчатую зубчатую передачу с рабочей машиной (рис. 16.3), угловая скорость которой ω р _ м. Если пренебречь потерями в передаче (они учитываются в приведенной системе), то из условия неизменности мощности следует:


где М ст - искомый статический момент рабочей машины, приведенный к валу двигателя (т. е. угловой скорости вала двигателя); М р м - действительный статический момент рабочей машины на ее валу; k пер = ω дв /ω р, м - передаточное число от двигателя к рабочей машине. Если рабочий орган под действием силы F p , M выполняет не вращательные, а поступательные движения со скоростью υ P , M , то на основании неизменности мощности

и, следовательно, искомый приведенный статический момент

В приведенной системе должны быть представлены и приведенные моменты инерции.

Приведенный момент инерции системы есть момент инерции системы, состоящей только из элементов, вращающихся с частотой вращения вала двигателя ω дв, но обладающих запасом кинетической энергии, равным запасу кинетической энергии действительной системы. Из условия неизменности кинетической энергии следует, что для системы, состоящей из соединенных через одну зубчатую передачу двигателя и вращающейся с угловой скоростью ω р, м рабочей машины, обладающей моментом инерции J P , м,

или искомый приведенный момент инерции системы

Таким образом, для сложного привода в уравнениях (16.1) и (16.4) подразумеваются приведенные значения статических моментов инерции. Если известен момент М, выраженный в Н-м, и частота вращения п, об/мин, то соответствующая мощность Р, кВт,

где коэффициент 9550 = 60-10 3 /2л не имеет размерности.

Основное уравнение движения электропривода связывает между собой электромагнитный момент двигателя, момент статистический, момент интеграции и скорость вала двигателя.

Разность, записанная в левой части выражения, представляет собой динамический момент

Если динамический момент не равен 0, то электропривод работает в динамическом режиме т.е. имеет место изменение скорости.

Если или то электропривод работает в статическом (т.е. устанавливается) режиме работы.


ПОТЕРИ В МЕХАНИЧЕСКОЙ ПЕРЕДАЧЕ. КПД ПЕРЕДАЧИ

Потери энергии (мощности) в передаче учитывают двумя способами:

1) приближенным, т.е. с помощью КПД и 2) уточненным, т.е. непосредственным вычислением составляющих потерь. Рассмотрим эти способы.

А. Учет потерь в передачах с помощью КПД.

Механическая часть электропривода (рис.1.17) включает ротор электродвигателя ЭД с угловой скоростью w и моментом М, передаточный механизм ПМ, имеющий КПД h п и передаточное число j, и исполнительный механизм ИМ, на валу которого приложен момент М м и скорость вала w м. Для наглядности обозначим статический момент в двигательном режиме , а в тормозном - . Для двигательного режима работы, исходя из закона сохранения энергии, можно записать равенство

,
, где ,

- момент механизма, приведенный к валу электродвигателя.

Для тормозного режима будем иметь такое равенство

,
,

Но КПД является переменной величиной, зависящей от постоянных и переменных потерь в передаче. Определим потерю момента в передаче для двигательного режима

,

Примем допущение, что в тормозном режиме будет такая же потеря момента. Тогда статический момент в тормозном режиме можно записать в таком виде:

1) , тогда , что соответствует тормозному режиму, когда двигатель развивает тормозной момент. Применительно к грузоподъемному механизму это будет опускание тяжелого груза, когда момент от действия груза на валу двигателя М г превышает момент потерь DМ в передаче. Получаем так называемый тормозной спуск;

2) , тогда , что соответствует не тормозному, значит, двигательному режиму. Для грузоподъемного механизма это эквивалентно опусканию крюка, когда момент от его веса на валу двигателя М К меньше момента потерь DМ в передаче. Имеем так называемый силовой спуск.

Потери момента в передаче приближенно выражаются через две составляющие, одна из которой для данной передачи является постоянной величиной, а вторая – пропорциональна передаваемому моменту:

где – коэффициент постоянных потерь;

b – коэффициент переменных потерь;

М с.ном – номинальный статический момент передачи;

М перед – передаваемый момент, который равен моменту на выходном (по направлению передачи энергии) валу передачи.

Для установившегося двигательного режима . КПД передачи можно представить отношением мощностей в установившемся режиме.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама