THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Документальные учебные фильмы. Серия «Физика».

Наличие у атомов магнитных моментов и их квантование было доказано прямыми опытами Штерна и Герлаха (1889- 1979) в 1921 г. В сосуде с высоким вакуумом создавался с помощью диафрагм резко ограниченный атомный пучок исследуемого элемента, испаряющегося в печи К. Пучок проходил через сильное магнитное поле Н между полюсньми наконечниками N и S электромагнита. Один из наконечников (N) имел вид призмы с острым ребром, а вдоль другого (S) была выточена канавка. Благодаря такой конструкции полюсных наконечников магнитное поле получалось сильно неоднородным. После прохождения через магнитное поле пучок попадал на фотопластинку Р и оставлял на ней след.

Рассчитаем поведение атомного пучка сначала с классической точки зрения, предполагая, что никакого квантования магнитных моментов нет. Если m-магнитный момент атома, то на атом в неоднородном магнитном поле действует сила
Направим ось Z вдоль магнитного поля (т. е. от N к S перпендикулярно к полюсным наконечникам). Тогда проекция силы в этом направлении будет
Первые два слагаемых в этом выражении не играют роли.

В самом деле, по классическим представлениям атом в магнитном поле совершает прецессию вокруг оси Z, вращаясь с ларморовской частотой
(заряд лектрона обозначен -е). Поэтому проекции совершают колебания с той же частотой, становясь попеременно то положительными, то отрицательными. Если угловая скорость прецессии достаточно велика, то силу fz можно усреднить по времени. При этом первые два члена в выражении для fz обратятся в нуль, и можно написать

Чтобы составить представление о степени допустимости та кого усреднения, произведем численную оценку. Период ларморовской прецессии равен ,

где поле Н измеряется в гауссах. Например, при Н = 1000 Гс получаем с. Если скорость атомов в пучке равна = 100 м/с = см/с, то за это время атом пролетает расстояние см, пренебрежимо малое по сравнению со всеми характерными размерами установки. Это и доказывает применимость проведенного усреднения.

Но формула может быть оправдана и с квантовой точки зрения. В самом деле, включение сильного магнитного поля вдоль оси Z приводит к состоянию атома только с одной определенной составляющей магнитного момента, а именно . Остальные две составляющие в этом состоянии не могут иметь определенных значений. При измерениях в этом состоянии получили бы различные значения и притом их средние были бы равны нулю. Поэтому и при квантовом рассмотрении усреднение оправдано.

Тем не менее следует ожидать различных результатов опыта с классической и с квантовой точек зрения. В опытах Штерна и Герлаха сначала получался след атомного пучка при выключенном магнитном поле, а затем при включенном. Если бы проекция могла принимать всевозможные непрерывные значения, как требует классическая теория, то сила fz также принимала бы всевозможные непрерывные значения. Включение магнитного поля приводило бы только к уширению пучка. Не то следует ожидать по квантовой теории. В этом случае проекция mz, а с ней и средняя сила fz квантованы, т. е. могут принимать только ряд дискретных избранных значений. Если орбитальное квантовое число атома равно I , то по теории при расщеплении получится пучков (т. е. оно равно числу возможных значений, которые может принимать квантовое число m). Таким образом, в зависимости от значения числа I следовало бы ожидать, что пучок расщепится на 1, 3, 5, ... составляющих. Ожидаемое число составляющих должно было бы быть всегда нечетным.

Опыты Штерна и Герлаха доказали квантование проекции . Однако их результаты не всегда соответствовали теории, изложенной выше. В первоначальных опытах применялись пучки атомов серебра. В магнитном поле пучок расщеплялся на две составляющие. То же получалось для атомов водорода. Для атомов других химических элементов получалась и более сложная картина расщепления, однако число расщепленных пучков получалось не только нечетным, что требовалось теорией, но и четным, что противоречило ей. В теорию необходимо было внести коррективы.

К этому следует добавить результаты опытов Эйнштейна и де Гааза (1878-1966), а также опытов Барнета (1873-1956) по определению гиромагнитного отношения. Для железа, например, оказалось, что гиромагнитное отношение равно т. е. вдвое больше, чем требуется по теории.

Наконец, оказалось, что спектральные термы щелочных металлов имеют так называемую дублетную структуру, т. е. состоят из двух близко расположенных уровней. Для описания этой структуры трех квантовых чисел n, I , m оказалось недостаточно-потребовалось четвертое квантовое число. Это явилось главным мотивом, послужившим Уленбеку (р. 1900) и Гаудсмиту (1902-1979) в 1925 г. для введения гипотезы о спине электрона. Сущность этой гипотезы состоит в том, что у электрона есть не только момент количества движения и магнитный момент, связанные с перемещением этой частицы как целого. Электрон имеет также собственный или внутренний механический момент количества движения, напоминая в этом отношении классический волчок. Этот собственный момент количества движения и называется спином (от английского слова to spin - вертеться). Соответствующий ему магнитный момент называется спиновым магнитным моментом. Эти моменты обозначаются соответственно через в отличие от орбитальных моментов Спин чаще обозначают просто через s .

В опытах Штерна и Герлаха атомы водорода находились в s-состоянии, т. е. не обладали орбитальными моментами. Магнитный момент ядра пренебрежимо мал. Поэтому Уленбек и Гаудсмит предположили, что расщепление пучка обусловлено не орбитальным, а спиновым магнитным моментом. То же самое относится к опытам с атомами серебра. Атом серебра имеет единственный наружный электрон. Атомный остов ввиду его симметрии спиновым и магнитным моментами не обладает. Весь магнитный момент атома серебра создается только одним наружным электроном. Когда атом находится в нормальном, т. е. s-состоянии, то орбитальный момент валентного электрона равен нулю - весь момент является спиновым.

Сами Уленбек и Гаудсмит предполагали, что спин возникает из-за вращения электрона вокруг собственной оси. Существовавшая в то время модель атома получила еще большее сходство с Солнечной системой. Электроны (планеты) не только вращаются вокруг ядра (Солнца), но и вокруг собственных осей. Однако сразу же выяснилась несостоятельность такого классического представления о спине. Паули систематически ввел спин в квантовую механику, но исключил всякую возможность классического истолкования этой величины. В 1928 г. Дирак показал, что спин электрона автоматически содержится в его теории электрона, основанной на релятивистском волновом уравнении. В теории Дирака содержится также и спиновый магнитный момент электрона, причем для гиромагнитного отношения получается значение, согласующееся с опытом. При этом о внутренней структуре электрона ничего не говорилось - последний рассматривался как точечная частица, обладающая лишь зарядом и массой. Таким образом, спин электрона оказался квантово-релятивистским эффектом, не имеющим классического истолкования. Затем концепция спина, как внутреннего момента количества движения, была распространена на другие элементарные и сложные частицы и нашла подтверждение и широкие применения в современной физике.

Разумеется, в общем курсе физики нет возможности вдаваться в подробную и строгую теорию спина. Мы примем в качестве исходного положения, что спину s соответствует векторный оператор проекции которого удовлетворяют таким же перестановочным соотношениям, что и проекции оператора орбитального момента, т. е.

Из них следует, что определенные значения в одном и том же состоянии могут иметь квадрат полного спина и одна из его проекций на определенную ось (принимаемую обычно за ось Z). Если максимальное значение проекции sz (в единицах ) равно s, то число всех возможных проекций, соответствующих данному s, будет равно 2s + 1. Опыты Штерна и Герлаха показали, что для электрона это число равно 2, т. е. 2s + 1 = 2, откуда s = 1/2. Максимальное значение, которое может принимать проекция спина на избранное направление (в единицах ), т. е. число s, и принимается за значение спина частицы.

Спин частицы может быть либо целым, либо полуцелым. Для электрона, таким образом, спин равен 1/2. Из перестановочных соотношений следует, что квадрат спина частицы равен , а для электрона (в единицах 2).
Измерения проекции магнитного момента по методу Штерна и Герлаха показали, что для атомов водорода и серебра величина равна магнетону Бора , т. е. . Таким образом, гиромагнитное отношение для электрона

В середине XIX века была сформулирована молекулярно-кинетическая теория, но тогда не было никаких доказательств существования самих молекул. Вся теория базировалась на предположении о движении молекул, но как измерить скорость их движения, если они невидимы?

Теоретики первыми нашли выход. Из уравнения молекулярно-кинетической теории газов известно, что

Получена формула для расчета среднеквадратичной скорости, но масса молекулы неизвестна. Запишем по-другому значение υ кв:

(2.1.2)

А мы знаем, что , тогда

(2.1.3)

Где Р – давление; ρ - плотность. Это уже измеряемые величины.

Например, при плотности азота, равной 1,25 кг/м, 3 , при t = 0 °С и P = 1 атм, скорости молекул азота . Для водорода: .

При этом интересно отметить, что скорость звука в газе близка к скорости молекул в этом газе , где γ – коэффициент Пуассона. Это объясняется тем, что звуковые волны переносятся молекулами газа.

Проверка того факта, что атомы и молекулы идеальных газов в термически равновесном пучке имеют различные скорости, была осуществлена немецким физиком Отто Штерном (1888-1969) в 1920 г. Схема его установки приведена на рис. 2.1.


Рис. 2.1

Платиновая нить А , покрытая снаружи серебром, располагается вдоль оси коаксиальных цилиндров S 1 , S 3 ,. Внутри цилиндров поддерживается низкое давление порядка Па. При пропускании тока через платиновую нить она разогревается до температуры выше точки плавления серебра (961,9 °С). Серебро испаряется, и его атомы через узкие щели в цилиндре S 1 , и диафрагме S 2 , летят к охлаждаемой поверхности цилиндра S 1 , на которой они осаждаются. Если цилиндры S 1 , S 3 и диафрагма не вращаются, то пучок осаждается в виде узкой полоски D на поверхности цилиндра S 3 . Если же вся система приводится во вращение с угловой скоростью то изображение щели смещается в точку и становится расплывчатым.

Пусть l – расстояние между D и , измеренное вдоль поверхности цилиндра S 3 , оно равно где – линейная скорость точек поверхности цилиндра S 3 , радиусом R ; - время прохождения атомами серебра расстояния . Таким образом, имеем откуда – можно определить величину скорости теплового движения атомов серебра. Температура нити в опытах Штерна равнялась 1200 °С, что соответствует среднеквадратичной скорости . В эксперименте для этой величины получилось значение от 560 до 640 м/с. Кроме того, изображение щели всегда оказывалось размытым, что указывало на то, что атомы Ag движутся с различными скоростями.

Таким образом, в этом опыте были не только измерены скорости газовых молекул, но и показано, что они имеют большой разброс по скоростям. Причина – в хаотичности теплового движения молекул. Ещё в XIX веке Дж. Максвелл утверждал, что молекулы, беспорядочно сталкиваясь друг с другом, как-то «распределяются» по скоростям, причём вполне определённым образом.

Изучение диффузии и броуновского движения позволяет получить некоторое представление о скорости хаотического движения молекул газа. Одним из наиболее простых и наглядных опытов для ее определения является опыт О. Штерна, выполненный им в 1920 г. Сущность этого опыта заключается в следующем.

На горизонтальном столике, который может вращаться вокруг оси О (рис. 3.2), перпендикулярно столику укрепляются цилиндрические поверхности А и В. Поверхность В сплошная, а в поверхности А имеется узкий прорез, параллельный оси О. Вдоль оси О расположена вертикально платиновая посеребренная проволока, которая включается в электрическую цепь. При пропускании тока проволока накаливается и с ее поверхности происходит испарение серебра. Молекулы серебра летят во все стороны и в основном оседают на внутренней стороне цилиндрической поверхности А. Лишь узкий пучок молекул серебра пролетает сквозь щель в этой

поверхности и оседает в области М на поверхности В. Ширина налета в М определяется шириной щели в поверхности А. Чтобы молекулы серебра не рассеивались при столкновениях с молекулами воздуха, вся установка накрывается колпаком, из-под которого выкачивается воздух. Чем уже щель в поверхности А, тем уже налет в области М и тем точнее может быть определена скорость движения молекул.

Само определение скорости основано на следующей идее. Если всю установку привести во вращение вокруг оси О с постоянной угловой скоростью то за время в течение которого молекула будет лететь от щели до поверхности В, последняя успеет повернуться и налет сместится из области М в область К. Следовательно, время полета молекулы вдоль радиуса и время смещения точки М поверхности В на расстояние одинаково. Так как молекула летит равномерно, то

где - искомая скорость, - радиус цилиндрической поверхности А. Поскольку линейная скорость точек поверхности В равна юг, то время можно выразить другой формулой:

Таким образом,

Так как при выполнении опыта остаются постоянными и определяются заранее, то, измерив можно найти скорость молекулы . В опыте Штерна она оказалась близкой к 500 м/с.

Поскольку налет в области К оказывается размытым, можно заключить, что молекулы серебра летят к поверхности В с различной скоростью. Средние значения скоростей молекул математически можно выразить формулой

В качестве примера отметим, что при 0 °С средняя скорость движения молекул водорода равна 1840 м/с, а азота - 493 м/с. Изменение толщины налета в области К дает представление о распределении молекул по скоростям их движения. Получается, что небольшое число молекул имеет скорости, в несколько раз превышающие среднюю скорость.

(Подумайте, где на рис. 3.2 оставили след молекулы, скорости которых больше средней скорости и как изменится положение налета, если усилить ток в проволоке О.)

Лекция 5

В результате многочисленных соударений молекул газа между собой (~10 9 столкновений за 1 секунду) и со стенками сосуда, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равновероятными, а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям.

При столкновениях скорости молекул изменяются случайным образом. Может оказаться, что одна из молекул в ряде столкновений будет получать энергию от других молекул и ее энергия будет значительно больше среднего значения энергии при данной температуре. Скорость такой молекулы будет большая, но, все-таки она будет иметь конечное значение, так как максимально возможная скорость – скорость света - 3·10 8 м/с. Следовательно, скорость молекулы вообще может иметь значения от 0 до некоторой υ max . Можно утверждать, что очень большие скорости по сравнению со средними значениями, встречаются редко, также как и очень малые.

Как показывают теория и опыты распределение молекул по скоростям не случайное, а вполне определенное. Определим сколько молекул, или какая часть молекул обладает скоростями, лежащими в некотором интервале вблизи заданной скорости.

Пусть в данной массе газа содержится N молекул, при этом dN молекул обладают скоростями, заключенными в интервале от υ до υ +. Очевидно, что это число молекул dN пропорционально общему числу молекул N и величине заданного интервала скорости

где a - коэффициент пропорциональности.

Также очевидно, что dN зависит и от величины скорости υ , так как в одинаковых по величине интервалах, но при разных абсолютных значениях скорости число молекул будет различным (пример: сравните число живущих в возрасте 20 – 21 год и 99 – 100 лет). Это значит, что коэффициент a в формуле (1) должен быть функцией скорости.

С учетом этого перепишем (1) в виде

(2)

Из (2) получим

(3)

Функция f (υ ) называется функцией распределения. Ее физический смысл следует из формулы (3)

если (4)

Следовательно, f (υ ) равна относительной доле молекул, скорости которых заключены в единичном интервале скоростей вблизи скорости υ . Более точно функция распределения имеет смысл вероятности любой молекуле газа иметь скорость, заключенную в единичном интервале вблизи скорости υ . Поэтому ее называют плотностью вероятности .

Проинтегрировав (2) по всем значениям скоростей от 0 до получим

(5)

Из (5) следует, что

(6)

Уравнение (6) называется условием нормировки функции. Оно определяет вероятность того, что молекула имеет одно из значений скорости от 0 до . Скорость молекулы имеет какое-нибудь значение: это событие достоверное и его вероятность равна единице.



Функция f (υ ) была найдена Максвеллом в 1859 году. Она была названа распределением Максвелла :

(7)

где A – коэффициент, который не зависит от скорости, m – масса молекулы, T – температура газа. Используя условие нормировки (6) можно определить коэффициент A :

Взяв этот интеграл, получим A :

С учетом коэффициента А функция распределения Максвелла имеет вид:

(8)

При возрастании υ множитель в (8) изменяется быстрее, чем растет υ 2 . Поэтому функция распределения (8) начинается в начале координат, достигает максимума при некотором значении скорости, затем уменьшается, асимптотически приближаясь к нулю (рис.1).

Рис.1. Максвелловское распределение молекул

по скоростям. T 2 > T 1

Используя кривую распределения Максвелла можно графически найти относительное число молекул, скорости которых лежат в заданном интервале скоростей от υ до (рис.1, площадь заштрихованной полоски).

Очевидно, что вся площадь, находящаяся под кривой дает общее число молекул N . Из уравнения (2) с учетом (8) найдем число молекул, скорости которых лежат в интервале от υ до

(9)

Из (8) также видно, что конкретный вид функции распределения зависит от рода газа (масса молекулы m ) и от температуры и не зависит от давления и объема газа.

Если изолированную систему вывести из состояния равновесия и предоставить самой себе, то через некоторый промежуток времени она вернется в состояние равновесия. Этот промежуток времени называется временем релаксации . Для различных систем он различный. Если газ находится в равновесном состоянии, то распределение молекул по скоростям не изменяется с течением времени. Скорости отдельных молекул беспрерывно изменяются, однако число молекул dN , скорости которых лежат в интервале от υ до все время остается постоянным.

Максвелловское распределение молекул по скоростям всегда устанавливается, когда система приходит в состояние равновесия. Движение молекул газа хаотичное. Точное определение хаотичности тепловых движений следующее: движение молекул полностью хаотично, если скорости молекул распределены по Максвеллу . Отсюда следует, что температура определяется средней кинетической энергией именно хаотичных движений . Как бы ни велика была бы скорость сильного ветра, она не сделает его «горячим». Ветер даже самый сильный, может быть и холодным и теплым, потому что температура газа определяется не направленной скоростью ветра, а скоростью хаотического движения молекул.

Из графика функции распределения (рис.1) видно, что число молекул, скорости которых лежат в одинаковых интервалах dυ , но вблизи различных скоростей υ , больше в том случае если скорость υ приближается к скорости, которая соответствует максимуму функции f (υ ). Эта скорость υ н называется наивероятнейшей (наиболее вероятной).

Продифференцируем (8) и приравняем производную к нулю:

Так как ,

то последнее равенство выполняется когда:

(10)

Уравнение (10) выполняется при:

И

Первые два корня соответствуют минимальным значениям функции. Тогда скорость, которая соответствует максимуму функции распределения, найдем из условия:

Из последнего уравнения:

(11)

где R – универсальная газовая постоянная, μ – молярная масса.

С учетом (11) из (8) можно получить максимальное значение функции распределения

(12)

Из (11) и (12) следует, что при повышении T или при уменьшении m максимум кривой f (υ ) сдвигается вправо и становится меньше, однако площадь под кривой остается постоянной (рис.1).

Для решения многих задач удобно пользоваться распределением Максвелла в приведенном виде. Введем относительную скорость:

где υ – данная скорость, υ н – наивероятнейшая скорость. С учетом этого уравнение (9) принимает вид:

(13)

(13) – универсальное уравнение. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Кривая f (υ ) ассиметрична. Из графика (рис.1) видно, что большая часть молекул имеет скорости большие, чем υ н . Асимметрия кривой означает, что средняя арифметическая скорость молекул не равна υ н . Средняя арифметическая скорость равна сумме скоростей всех молекул, деленная на их число:

Учтем, что согласно (2)

(14)

Подставив в (14) значение f (υ ) из (8) получим среднюю арифметическую скорость:

(15)

Средний квадрат скорости молекул получим, вычислив отношение суммы квадратов скоростей всех молекул к их числу:

После подстановки f (υ ) из (8) получим:

Из последнего выражения найдем среднюю квадратичную скорость:

(16)

Сопоставляя (11), (15) и (16) можно сделать вывод, что, и одинаково зависят от температуры и отличаются только численными значениями: (рис.2).

Рис.2. Распределение Максвелла по абсолютным значениям скоростей

Распределение Максвелла справедливо для газов находящихся в состоянии равновесия, рассматриваемое число молекул должно быть достаточно большим. Для малого числа молекул могут наблюдаться значительные отклонения от распределения Максвелла (флуктуации).

Первое опытное определение скоростей молекул провел Штерн в 1920 году. Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры (~1200 о С), что приводило к испарению атомов серебра.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проходили движущиеся атомы серебра. Осаждаясь на внутренней поверхности внешнего цилиндра, они образовывали хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью ω. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние l .

В точке 1 оседают частицы, когда установка неподвижна, при вращении установки частицы оседают в точке 2.

Полученные значения скоростей подтвердили теорию Максвелла. Однако о характере распределения молекул по скоростям этот метод давал приблизительные сведения.

Более точно распределение Максвелла было проверено опытами Ламмерта, Истэрмана, Элдриджа и Коста . Эти опыты достаточно точно подтвердили теорию Максвелла.

Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом . Упрощенная схема этого эксперимента показана на рис. 3.

Рис.3. Схема опыта Ламмерта
1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 – детектор

Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол φ . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

При вращении дисков с постоянной угловой скоростью ω, через их прорези беспрепятственно проходили только атомы, имевшие некоторую скорость υ . Для атомов, проходящих обе щели должно выполняться равенство:

где Δt 1 - время пролета молекул между дисками, Δt 2 - время поворота дисков на угол φ . Тогда:

Изменяя угловую скорость вращения дисков можно было выделять из пучка молекулы, имеющие определенную скорость υ , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

Таким способом удалось экспериментально проверить Максвелловский закон распределения молекул по скоростям.

1 - платиновая проволока с нанесённым на неё слоем серебра; 2 - щель, формирующая пучок атомов серебра; 3 - пластинка, на которой осаждаются атомы серебра; П и П1 - положения полосок осажденного серебра при неподвижном приборе и при вращении прибора.

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v {\displaystyle v} , определяемой температурой нагрева платиновой проволоки, то есть температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω {\displaystyle \omega } . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s {\displaystyle s} наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t = s u = l v ⇒ v = u l s = ω R b i g (R b i g − R s m a l l) s {\displaystyle t={\frac {s}{u}}={\frac {l}{v}}\Rightarrow v={\frac {ul}{s}}={\frac {\omega R_{big}(R_{big}-R_{small})}{s}}} ,

где s {\displaystyle s} - смещение полосы, l {\displaystyle l} - расстояние между цилиндрами, а u {\displaystyle u} - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра (584 м/с) совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее. При этом опыт давал лишь приблизительные сведения о характере распределения Максвелла, более точное экспериментальное подтверждение относится к 1930 году (

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама