THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сфера применения электрических аккумуляторов довольно-таки широка. Небольшими батареями комплектуются привычные для всех бытовые приборы, АКБ слегка больших размеров оснащаются автомобили, ну а уж очень крупные и ёмкостные аккумуляторы монтируют в нагруженные работой промышленные станции. Казалось бы, что помимо пользовательского назначения у разных видов АКБ может быть общего? Однако на самом деле сходств у подобных батарей более чем достаточно. Пожалуй, одним из основных среди возможных сходств аккумуляторов является принцип организации их работы. В сегодняшнем материале наш ресурс решил рассмотреть именно один из таковых. Если быть точнее, то ниже речь пойдет о функционировании и правилах эксплуатации никель-металлогидридных батарей.

История появления никель-металлогидридных АКБ

Создание никель-металлогидридных аккумуляторов начало вызывать немалый интерес у представителей инженерии более 60 лет назад, то есть в 50-х годах 20 века. Ученые, специализирующиеся на изучение физико-химических свойств АКБ, всерьёз задумались над тем, как преодолеть недостатки популярных на то время никель-кадмиевых батарей. Пожалуй, одной из основных целей ученых было создание такого аккумулятора, который мог бы ускорить и упростить процесс протекания всех реакций, связанных с электролитической передачей водорода.

В итоге, специалистам лишь к концу 70-х годов удалось сначала спроектировать, а затем создать и полноценно испытать более-менее качественные никель-металлогидридные батареи. Главное отличие нового типа АКБ от предшественников заключалось в том, что он имел строго определённые места для скопления основной массы водорода. Говоря точнее, скопление вещества происходило в сплавах нескольких металлов, находящихся на электродах аккумулятора. Состав сплавов имел такую структуру, что один или несколько металлов накапливали водород (иногда в несколько тысяч раз превышающих их объём), а другие металлы выступали в роли катализаторов электролитических реакций, обеспечивая переход водородного вещества в металлическую решётку электродов.

Сделанный аккумулятор, имеющий водородно-металлогидридный анод и никелевый катод, получил аббревиатуру «Ni-MH» (от названия токопроводящих, накапливающих веществ). Работают подобные АКБ на щелочном электролите и обеспечивают отличный цикл «заряд-разряд» — до 2 000 тысяч для одной полноценной батареи. Несмотря на это, путь к проектировке аккумуляторов Ni-MH был нелёгок, а существующие на данный момент образцы до сих пор модернизируются. Основной вектор модернизации направлен на увеличение энергетической плотности батарей.

Отметим, что сегодня никель-металлогидридные АКБ в большинстве своём производятся на основе сплава металлов «LaNi5». Первый образец подобных аккумуляторов был запатентован в 1975 году и стал активно использоваться в широкой промышленности. Современные никель-металлогидридные батареи имеют высокую энергетическую плотность и состоят из совершенно нетоксичного сырья, что упрощает их утилизацию. Пожалуй, именно из-за данных преимуществ они стали очень популярны во многих сферах, где требуется долгое хранение электрического заряда.

Устройство и принцип работы никель-металлогидридной батареи

Никель-металлогидридные аккумуляторы всех размерностей, ёмкостей и предназначений выпускают в двух основных типах форм – призматической и цилиндрической. Вне зависимости от формы, подобные АКБ состоят из следующих обязательных элементов:

  • металлогидридных и никелевых электродов (катодов и анодов), образующих гальванический элемент сеточной структуры, который отвечает за движение и накопление электрического заряда;
  • сепараторных областей, разделяющих электроды и также участвующих в процессе электролитических реакций;
  • выводных контактов, отдающих во внешнюю среду накопленный заряд;
  • крышки с вмонтированным в неё клапаном, необходимой для сброса излишнего давления из полостей аккумулятора (давления свыше 2-4 мегапаскаль);
  • термозащитного и крепкого корпуса, вмещающего описанные выше элементы батареи.

Конструкция никель-металлогидридных аккумуляторов, как и многих других типов данного устройства, довольно-таки проста и особых сложностей в рассмотрении не представляет. Наглядно это показано на следующих конструктивных схемах АКБ:

Принципы работы рассматриваемых АКБ, в отличие от их общей конструктивной схемы, выглядят слегка сложнее. Для понимания их сути давайте обратим внимание на поэтапное функционирование никель-металлогидридных аккумуляторов. В типовом варианте этапы работы у данных батарей следующие:

  1. Положительный электрод – анод, осуществляет окислительную реакцию с абсорбцией водорода;
  2. Отрицательный электрод – катод, реализует восстановительную реакцию в дисабсорбицией водорода.

Говоря простым языком, электродная сетка организует упорядоченное движение частиц (электродов и ионов) посредством конкретных химических реакций. При этом непосредственно электролит в основной реакции выделения электричества не участвует, а включается в работу лишь при определённых обстоятельствах функционирования аккумуляторов Ni-MH (например, при перезарядке, реализуя реакцию циркуляции кислорода). Более подробно рассматривать принципы работы никель-металлогидридных АКБ не будем, так как для этого требуются специальные химические знания, которых у многих читателей нашего ресурса нет. При желании узнать о принципах работы батарей в больших подробностях стоит обратиться к технической литературе, которая максимально подробно освещает течение каждой реакции на концах электродах как при заряде батарей, так и при их разряде.

Характеристики стандартного АКБ Ni-MH можно увидеть в следующей таблице (столбец посередине):

Правила эксплуатации

Любой аккумулятор – относительно неприхотливое в обслуживании и эксплуатации устройство. Несмотря на это, его стоимость зачастую высока, поэтому каждый владелец той или иной батареи заинтересован в увеличении её срока службы. Относительно АКБ формации «Ni-MH» продлить эксплуатационный период не столь сложно. Для этого достаточно:

  • Во-первых, соблюдать правила зарядки аккумулятора;
  • Во-вторых, правильно его эксплуатировать и хранить при простое.

О первом аспекте обслуживания АКБ поговорим чуть позже, ну а сейчас обратим внимание на основной перечень правил эксплуатации никель-металлогидридных батарей. Шаблонный список данных правил таков:

  • Хранение никель-металлогидридных аккумуляторов должно осуществляться только в их заряженном состоянии на уровне 30-50 %;
  • Строго запрещается перегревать АКБ Ni-MH, так как по сравнению с теми же никель-кадмиевыми батареями, рассматриваемые нами намного чувствительней к нагреву. Перегруженность работой отрицательно сказывается на всех процессах, протекающих в полостях и на выходах аккумулятора. Особенно страдает токоотдача;
  • Никогда не перезаряжайте никель-металлогидридные батареи. Всегда придерживайтесь правил зарядки, описанных в настоящей статье или отражённых в технической документации к аккумулятору;
  • В процессе слабой эксплуатации или длительном хранении «тренируйте» АКБ. Зачастую хватает периодически проводимого цикла «заряд-разряд» (порядка 3-6 раз). Также подобной «тренировке» желательно подвергать новые батареи Ni-MH;
  • Хранить аккумуляторы никель-металлогидридной формации требуется в комнатном температурном режиме. Оптимальная температура – 15-23 градусов по Цельсию;
  • Старайтесь не разряжать аккумулятор до минимальных пределов – напряжение, меньшее 0,9 Вольт для каждой пары «катод-анод». Восстановлению никель-металлогидридные АКБ, конечно, поддаются, но желательно их не доводить до «мёртвого» состояния (о том, как восстановить батарею, также поговорим ниже);
  • Следите за конструктивным качеством батареи. Не допускается наличие серьёзных дефектов, недостаток электролита и тому подобные вещи. Рекомендуемая периодичность проверки АКБ равняется 2-4 неделям;
  • В случае с использованием больших, стационарных батарей также важно придерживаться правил:
    • их текущего ремонта (не менее раза в год):
    • капитального восстановления (не менее раза в 3 года);
    • надёжного крепления АКБ в месте использования;
    • наличия освещения;
    • использования правильных зарядных устройств;
    • и соблюдения техники безопасности использования подобных аккумуляторов.

Придерживаться описанных правил важно не только потому, что подобный подход к эксплуатации никель-металлогидридных АКБ существенно продлить их срок службы. Также они гарантируют безопасное и, в целом, беспроблемное, использование батареи.

Правила зарядки

Раннее было отмечено, что правила эксплуатации – это далеко не единственное, что требуется для достижения максимального эксплуатационного срока никель-металлогидридных АКБ. Помимо грамотного использования, подобные батареи крайне важно грамотно заряжать. Вообще, ответить на вопрос – «Как правильно заряжать аккумулятор Ni-MH?», довольно-таки сложно. Дело в том, что каждый тип сплавов, используемый на электродах батареи, требует определённых правил данного процесса.

Обобщив и усреднив их, можно выделить следующие фундаментальные основы зарядки никель-металлогидридных аккумуляторов:

  • Во-первых, требуется соблюдать правильное время зарядки. Для большинства АКБ Ni-MH оно составляет либо 15 часов при зарядном токе около 0,1 С, либо 1-5 часов при зарядном токе в пределах 0,1-1 С для батарей с высокоактивными электродами. Исключениями являются восстанавливаемые аккумуляторы, которые могут заряжаться более 30 часов;
  • Во-вторых, важно отслеживать температуру батареи в процессе зарядки. Многие производители не рекомендуют превышать температурный максимум в 50-60 градусов по Цельсию;
  • И в-третьих, следует учитывать непосредственно порядок проведения зарядки. Оптимальным считается такой подход, когда АКБ разряжается номинальным током до напряжения на выходах в 0,9-1 Вольт, после чего заряжается на 75-80 % от своей максимальной ёмкости. При этом важно учитывать, что при быстрой зарядке (подаваемый ток более 0,1) важно организовать предзарядку с подачей высокого тока на аккумулятор около 8-10 минут. После этого процесс зарядки стоит организовать с плавным повышением подаваемого на АКБ напряжения до 1,6-1,8 Вольт. К слову, при обычной подзарядке никель-металлогидридного аккумулятора напряжение зачастую не изменяется и в норме составляет 0,3-1 Вольт.

Примечание! Отмеченные выше правила зарядки батарей носят усреднённый характер. Не забывайте, что для конкретной марки никель-металлогидридной АКБ они могут слегка отличаться.

Восстановление аккумулятора

Наряду с дороговизной и быстрым саморазрядом, у аккумуляторов Ni-MH есть ещё один недостаток – ярко выраженный «эффект памяти». Его суть заключается в том, что при систематичной зарядке не полностью разряженной батареи она как бы запоминает это и с течением времени существенно теряет в своей ёмкости. Для нейтрализации подобных рисков владельцам подобных АКБ требуется заряжать максимально разряженные батареи, а также периодически «тренировать» их путём процесса восстановления.

Восстанавливать никель-металлогидридные аккумуляторы при «тренировке» или при их сильном разряде необходимо следующим образом:

  1. В первую очередь, необходимо подготовиться. Для восстановления потребуются:
    • качественный и, желательно, умный зарядный прибор;
    • инструменты для замера напряжения и сила тока;
    • любое устройство, способное потреблять энергию с АКБ.
  2. После подготовки можно уже задаться вопросом по поводу того, как восстановить батарею. Сначала необходимо по всем правилам зарядить аккумулятор, а затем его разрядить по напряжения на выходах батареи в 0,8-1 Вольт;
  3. Затем начинается непосредственно восстановление, которое, опять же, должно проводится в соответствии со всеми правилами зарядки никель-металлогидридных аккумуляторов. Стандартный процесс восстановления может быть проведён двумя способами:
    • Первый – если АКБ подаёт признаки «жизни» (как правило, при разряде на уровне 0,8-1 Вольт). Зарядка проходит с постоянным увеличением подаваемого напряжение с 0,3 до 1 Вольта с силой тока 0,1 С в течение 30-60 минут, после чего вольтаж остаётся неизменным, а сила тока увеличивается до 0,3-0,5 С;
    • Второй – если АКБ не подаёт признаков «жизни» (при разряде менее 0,8 Вольт). В таком случае зарядка осуществляется с 10-минутной пред-зарядкой высоким током на протяжении 10-15 минут. После этого проводятся описанные выше действия.

Стоит понимать, что восстановление никель-металлогидридных АКБ – это процедура, которую требуется периодически проводить для абсолютно всех аккумуляторов (и «живых», и «неживых»). Только такой подход к эксплуатации данного типа батарей поможет «выжать» из них максимум.

Пожалуй, на этом повествование по сегодняшней теме можно завершать. Надеемся, представленный выше материал был для вас полезен и дал ответы на интересующие вопросы.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Данная статья про Никель-металлогидридные (Ni-MH) аккумуляторы уже давно является классикой на просторах российского интернета. Рекомендую ознакомиться …

Никель-металлогидридные (Ni-MH) аккумуляторы по своей конструкции являются аналогами никель-кадмиевых (Ni-Cd) аккумуляторов, а по электрохимическим процессам — никель-водородных аккумуляторов. Удельная энергия Ni-MH аккумулятора существенно выше удельной энергии Ni-Cd и водородных аккумуляторов (Ni-H2)

ВИДЕО: Аккумуляторы никель-металлгидридные (NiMH)

Сравнительные характеристики аккумуляторов

Параметры Ni-Cd Ni-H2 Ni-MH
Номинальное напряжение, V 1.2 1.2 1.2
Удельная энергия: Втч/кг | Втч/л 20-40
60-120
40-55
60-80
50-80
100-270
Срок службы: годы | циклы 1-5
500-1000
2-7
2000-3000
1-5
500-2000
Саморазряд, % 20-30
(за 28 сут.)
20-30
(за 1 сут.)
20-40
(за 28 сут.)
Рабочая температура, °С -50 — +60 -20 — +30 -40 — +60

***Большой разброс некоторых параметров в таблице вызван различным назначением (конструкциями) аккумуляторов. Кроме того, в таблице не учитываются данные по современным аккумуляторам с низким саморазрядом

История Ni-MH аккумулятора

Разработка никель-металл-гидридных (Ni-MH) аккумуляторных батарей началась в 50-70-х гг прошлого века. В результате был создан новый способ сохранения водорода в никель-водородных батареях, которые использовались в космических аппаратах. В новом элементе водород накапливался в сплавах определенных металлов. Сплавы, абсорбирующие водород в объеме в 1000 раз больше их собственного объема, были найдены в 1960-х годах. Эти сплавы состоят из двух или нескольких металлов, один из которых абсорбирует водород, а другой является катализатором, способствующим диффузии атомов водорода в решетку металла. Количество возможных комбинаций применяемых металлов практически не ограничено, что дает возможность оптимизировать свойства сплава. Для создания Ni-MH аккумуляторов потребовалось создание сплавов, работоспособных при малом давлении водорода и комнатной температуре. В настоящее время работа по созданию новых сплавов и технологий их обработки продолжается во всем мире. Сплавы никеля с металлами редкоземельной группы могут обеспечить до 2000 циклов заряда-разряда аккумулятора при понижении емкости отрицательного электрода не более чем на 30 %. Первый Ni-MH аккумулятор, в котором в качестве основного активного материала металлгидридного электрода применялся сплав LaNi5, был запатентован Биллом в 1975 г. В ранних экспериментах с металлгидридными сплавами, никель-металлгидридные аккумуляторы работали нестабильно, и требуемой емкости батарей достичь не получалось. Поэтому промышленное использование Ni-MH аккумуляторов началось только в середине 80-х годов после создания сплава La-Ni-Co, позволяющего электрохимически обратимо абсорбировать водород на протяжении более 100 циклов. С тех пор конструкция Ni-MH аккумуляторных батарей непрерывно совершенствовалась в сторону увеличения их энергетической плотности. Замена отрицательного электрода позволила повысить в 1,3-2 раза закладку активных масс положительного электрода, который и определяет емкость аккумулятора. Поэтому Ni-MH аккумуляторы имеют по сравнению с Ni-Cd аккумуляторами значительно более высокими удельными энергетическими характеристиками. Успех распространению никель-металлгидридных аккумуляторных батарей обеспечили, высокая энергетическая плотность и нетоксичностъ материалов, используемых при их производстве.

Основные процессы Ni-MH аккумуляторов

В Ni-MH аккумуляторах в качестве положительного электрода используется оксидно-никелевый электрод, как и в никель-кадмиевом аккумуляторе, а электрод из сплава никеля с редкоземельными металлами, поглощающий водород, используется вместо отрицательного кадмиевого электрода. На положительном оксидно-никелевом электроде Ni-MH аккумулятора протекает реакция:

Ni(OH) 2 + OH- → NiOOH + H 2 O + e — (заряд) NiOOH + H 2 O + e — → Ni(OH) 2 + OH — (разряд)

На отрицательном электроде металл с абсорбированным водородом превращается в металлгидрид:

M + H 2 O + e — → MH + OH- (заряд) MH + OH — → M + H 2 O + e — (разряд)

Общая реакция в Ni-MH аккумуляторе записывается в следующем виде:

Ni(OH) 2 + M → NiOOH + MH (заряд) NiOOH + MH → Ni(OH) 2 + M (разряд)

Электролит в основной токообразующей реакции не участвует. После сообщения 70-80 % емкости и при перезаряде на оксидно-никелевом электроде начинает выделяться кислород,

2OH- → 1/2O 2 + H2O + 2e — (перезаряд)

который восстанавливается на отрицательном электроде:

1/2O 2 + H 2 O + 2e — → 2OH — (перезаряд)

Две последние реакции обеспечивают замкнутый кислородный цикл. При восстановлении кислорода обеспечивается еще и дополнительное повышение емкости металлгидридного электрода за счет образования группы ОН — .

Конструкция электродов Ni-MH аккумуляторов

Металлводородный электрод

Главным материалом, определяющим характеристики Ni-MH аккумулятора, является водород-абсорбирующий сплав, который может поглощать объем водорода, в 1000 раз превышающий свой собственный объем. Самое большое распространение получили сплавы типа LaNi5, в которых часть никеля заменена марганцем, кобальтом и алюминием для увеличения стабильности и активности сплава. Для уменьшения стоимости некоторые фирмы-производители вместо лантана применяют миш-металл (Мm, который представляет собой смесь редкоземельных элементов, их соотношение в смеси близко к соотношению в природных рудах), включающий кроме лантана также церий, празеодим и неодим. При зарядно-разрядном циклировании имеет место расширение и сжатие на 15-25% кристаллической решетки водородабсорбирующих сплавов из-за абсорбции и десорбции водорода. Такие изменения ведут к образованию трещин в сплаве из-за увеличения внутреннего напряжения. Образование трещин вызывает увеличение площади поверхности, которая подвергается коррозии при взаимодействии со щелочным электролитом. По этим причинам разрядная емкость отрицательного электрода постепенно понижается. В аккумуляторе с ограниченным количеством электролита, это порождает проблемы, связанные с перераспределением электролита. Коррозия сплава приводит к химической пассивности поверхности из-за образования стойких к коррозии оксидов и гидроксидов, которые повышают перенапряжение основной токообразующей реакции металлогидридного электрода. Образование продуктов коррозии происходит с потреблением кислорода и водорода из раствора электролита, что, в свою очередь, вызывает снижение количества электролита в аккумуляторе и повышение его внутреннего сопротивления. Для замедления нежелательных процессов диспергирования и коррозии сплавов, определяющих срок службы Ni-MH аккумуляторов, применяются (помимо оптимизации состава и режима производства сплава) два основных метода. Первый метод заключается в микрокапсулировании частиц сплава, т.е. в покрытии их поверхности тонким пористым слоем (5-10 %) — по массе никеля или меди. Второй метод, нашедший наиболее широкое применение в настоящее время, заключается в обработке поверхности частиц сплава в щелочных растворах с формированием защитных пленок, проницаемых для водорода.

Оксидноникелевый электрод

Оксидно-никелевые электроды в массовом производстве изготавливаются в следующих конструктивных модификациях: ламельные, безламельные спеченные (металлокерамические) и прессованные, включая таблеточные. В последние годы начинают использоваться безламельные войлочные и пенополимерные электроды.

Ламельные электроды

Ламельные электроды представляют собой набор объединенных между собой перфорированных коробочек (ламелей), произведенных из тонкой (толщиной 0,1 мм) никелированной стальной ленты.

Спеченные (металлокерамические) электроды

электроды данного типа состоят из пористой (с пористостью не менее 70%) металлокерамической основы, в порах которой располагается активная масса. Основу изготовляют из карбонильного никелевого мелкодисперсного порошка, который в смеси с карбонатом аммония или карбамидом (60-65% никеля, остальное — наполнитель) напрессовывают, накатывают или напыляют на стальную или никелевую сетку. Затем сетку с порошком подвергают термообработке в восстановительной атмосфере (обычно в атмосфере водорода) при температуре 800-960 °С, при этом карбонат аммония или карбамид разлагается и улетучивается, а никель спекается. Полученные таким образом основы имеют толщину 1-2,3 мм, пористость 80-85% и радиус пор 5-20 мкм. Основу поочередно пропитывают концентрированным раствором нитрата никеля или сульфата никеля и нагретым до 60-90 °С раствором щелочи, которая побуждает осаждение оксидов и гидроксидов никеля. В настоящее время используется также электрохимический метод пропитки, при котором электрод подвергается катодной обработке в растворе нитрата никеля. Из-за образования водорода раствор в порах пластины подщелачивается, что приводит к осаждению оксидов и гидроксидов никеля в порах пластины. К разновидностям спеченных электродов причисляют фольговые электроды. Электроды производят нанесением на тонкую (0,05 мм) перфорированную никелевую ленту с двух сторон, методом пульверизации, спиртовой эмульсии никелевого карбонильного порошка, содержащей связующие вещества, спеканием и дальнейшей химической или электрохимической пропиткой реагентами. Толщина электрода составляет 0,4-0,6 мм.

Прессованные электроды

Прессованные электроды изготавливают методом напрессовки под давлением 35-60 МПа активной массы на сетку или стальную перфорированную ленту. Активная масса состоит из гидроксида никеля, гидроксида кобальта, графита и связующего вещества.

Металловойлочные электроды

Металловойлочные электроды имеют высокопористую основу, сделанную из никелевых или углеродных волокон. Пористость этих основ — 95 % и более. Войлочный электрод выполнен на базе никелированного полимерного или углеграфитового фетра. Толщина электрода в зависимости от его предназначения находится в диапазоне 0,8-10 мм. Активная масса вносится в войлок разными методами в зависимости от его плотности. Вместо войлока может использоваться пеноникель , получаемый никелированием пенополиуретана с последующим отжигом в восстановительной среде. В высокопористую среду вносятся обычно методом намазки паста, содержащая гидроксид никеля, и связующее. После этого основа с пастой сушится и вальцуется. Войлочные и пенополимерные электроды характеризуются высокой удельной емкостью и большим ресурсом.

Конструкция Ni-MH аккумуляторов

Ni-MH аккумуляторы цилиндрической формы

Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой (рисунок 1). Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Рис.1. Конструкция никель-металлгидридного (Ni-MH) аккумулятора: 1-корпус, 2-крышка, 3-калпачок клапана, 4-клапан, 5-колектор положительного электрода, 6-изоляционное кольцо, 7-отрецательный электрод, 8-сепаротор, 9-положительный электрод, 10-изолятор.

Ni-MH аккумуляторы призматической формы

В призматических Ni-MH аккумуляторах положительные и отрицательные электроды размещены поочередно, а между ними размещается сепаратор. Блок электродов вставлен в металлический или пластмассовый корпус и закрыт герметизирующей крышкой. На крышке как правило устанавливается клапан или датчик давления (рисунок 2).

Рис.2. Конструкция Ni-MH аккумулятора: 1-корпус, 2-крышка, 3-калпачок клапана, 4-клапан, 5-изоляционная прокладка, 6-изолятор, 7-отрецательный электрод, 8-сепаротор, 9-положительный электрод.

В Ni-MH аккумуляторах используется щелочной электролит, состоящий из КОН с добавкой LiOH. В качестве сепаратора в Ni-MH аккумуляторах применяются нетканые полипропилен и полиамид толщиной 0,12-0,25 мм, обработанные смачивателем.

Положительный электрод

В Ni-MH аккумуляторах применяются положительные оксидно-никелевые электроды, аналогичные используемым в Ni-Cd аккумуляторах. В Ni-MH аккумуляторах в основном применяются металлокерамические, а в последние годы — войлочные и пенополимерные электроды (см. выше).

Отрицательный электрод

Практическое применение в Ni-MH аккумуляторах нашли пять конструкций отрицательного металлогидридного электрода (см. выше): — ламельная, когда порошок водород-абсорбирующего сплава со связующим веществом или без связующего, запрессован в никелевую сетку; — пеноникелевая, когда паста со сплавом и связующим веществом вводится в поры пеноникелевой основы, а потом сушится и прессуется (вальцуется); — фольговая, когда паста со сплавом и связующим веществом наносится на перфорированную никелевую или стальную никелированную фольгу, а потом сушится и прессуется; — вальцованная, когда порошок активной массы, состоящей из сплава и связующего вещества, наносится вальцеванием (прокаткой) на растяжную никелевую решетку или медную сетку; — спеченная, когда порошок сплава напрессовывается на никелевую сетку и после этого спекается в атмосфере водорода. Удельные емкости металлогидридных электродов разных конструкций близки по значению и определяются, в основном, емкостью применяемого сплава.

Характеристики Ni-MH аккумуляторов. Электрические характеристики

Напряжение разомкнутой цепи

Значение напряжения разомкнутой цепи Uр.ц. Ni-MH-системы точно определить тяжело вследствие зависимости равновесного потенциала оксидно-никелевого электрода от степени окисленности никеля, а также зависимости равновесного потенциала металлогидридного электрода от степени насыщения его водородом. Через 24 часа после заряда аккумулятора, напряжение разомкнутой цепи заряженного Ni-MH аккумулятора находится в интервале 1,30-1,35В.

Номинальное разрядное напряжение

Uр при нормированном токе разряда Iр = 0,1-0,2С (С — номинальная емкость аккумулятора) при 25°С составляет 1,2-1,25В, обычное конечное напряжение — 1В. Напряжение уменьшается с ростом нагрузки (см. рисунок 3)

Рис.3. Разрядные характеристики Ni-MH аккумулятора при температуре 20°С и разных нормированных токах нагрузки: 1-0,2С; 2-1С; 3-2С; 4-3С

Ёмкость аккумуляторов

С повышением нагрузки (уменьшение времени разряда) и при понижении температуры емкость Ni-MH аккумулятора уменьшается (рисунок 4). Особенно заметно действие снижения температуры на емкость при больших скоростях разряда и при температурах ниже 0°С.

Рис.4. Зависимость разрядной емкости Ni-MH аккумулятора от температуры при разных токах разряда: 1-0,2С; 2-1С; 3-3С

Сохранность и срок службы Ni-MH аккумуляторов

При хранении происходит саморазряд Ni-MH аккумулятора. По прошествии месяца при комнатной температуре потеря емкости составляет 20-30%, а при дальнейшем хранении потери уменьшаются до 3-7% в месяц. Скорость саморазряда повышается при увеличении температуры (см. рисунок 5).

Рис.5. Зависимость разрядной емкости Ni-MH аккумулятора от времени хранения при разных температурах: 1-0°С; 2-20°С; 3-40°С

Зарядка Ni-MH аккумулятора

Наработка (число разрядно-зарядных циклов) и срок службы Ni-MH аккумулятора в значительной мере определяются условиями эксплуатации. Наработка понижается с увеличением глубины и скорости разряда. Наработка зависит от скорости заряда и способа контроля его окончания. В зависимости от типа Ni-MH аккумуляторов, режима работы и условий эксплуатации аккумуляторы обеспечивают от 500 до 1800 разрядно-зарядных циклов при глубине разряда 80% и имеют срок службы (в среднем) от 3 до 5 лет.

Для обеспечения надежной работы Ni-MH аккумулятора в течение гарантированного срока нужно соблюдать рекомендации и инструкцию производителя. Наибольшее внимание следует уделить температурному режиму. Желательно избегать переразрядов (ниже 1В) и коротких замыканий. Рекомендуется использовать Ni-MH аккумуляторы по назначению, избегать сочетания бывших в употреблении и неиспользованных аккумуляторов, не припаивать непосредственно к аккумулятору провода или прочие части. Ni-MH аккумуляторы более чувствительны к перезаряду, чем Ni-Cd. Перезаряд может привести к тепловому разгону. Зарядка как правило производится током Iз=0,1С на протяжении 15 часов. Компенсационный подзаряд производят током Iз=0,01-0,03С на протяжении 30 часов и более. Ускоренный (за 4 — 5 часов) и быстрый (за 1 час) заряды возможны для Ni-MH аккумуляторов, имеющих высокоактивные электроды. При таких зарядах процесс контролируется по изменению температуры ΔТ и напряжения ΔU и другим параметрам. Быстрый заряд применяется, например, для Ni-MH аккумуляторов, питающих ноутбуки, сотовые телефоны, электрические инструменты, хотя в ноутбуках и сотовых телефонах сейчас в основном используются литий-ионные и литий-полимерные аккумуляторы. Рекомендуется также трехступенчатый способ заряда: первый этап быстрого заряда (1С и выше), заряд со скоростью 0,1С в течение 0,5-1 ч для заключительной подзарядки, и заряд со скоростью 0,05-0,02С в качестве компенсационного подзаряда. Информация о способах заряда Ni-MH аккумуляторов обычно содержится в инструкциях фирмы-производителя, а рекомендуемый ток зарядки указан на корпусе аккумулятора. Зарядное напряжение Uз при Iз=0,3-1С лежит в интервале 1,4-1,5В. По причине выделения кислорода на положительном электроде, количество электричества преданного при заряде (Qз) больше разрядной емкости (Ср). При этом отдача по емкости (100 Ср/Qз) составляет 75-80% и 85-90% соответственно для дисковых и цилиндрических Ni-MH аккумуляторов.

Контроль заряда и разряда

Для исключения перезаряда Ni-MH аккумуляторных батарей могут применятся следующие методы контроля заряда с соответствующими датчиками, устанавливаемыми в аккумуляторные батареи или зарядные устройства:

    • метод прекращения заряда по абсолютной температуре Тmax. Температура батареи постоянно контролируется во время процесса заряда, а при достижении максимального значения быстрый заряд прерывается;
    • метод прекращения заряда по скорости изменения температуры ΔT/Δt. При применении этого метода крутизна температурной кривой аккумуляторной батареи постоянно контролируется во время процесса заряда, а когда этот параметр становится выше определенно установленного значения, заряд прерывается;
    • метод прекращения заряда по отрицательной дельте напряжения -ΔU. В конце заряда аккумулятора при осуществлении кислородного цикла начинает повышаться его температура, приводя к уменьшению напряжения;
    • метод прекращения заряда по максимальному времени заряда t;
    • метод прекращения заряда по максимальному давлению Pmax. Используется обычно в призматических аккумуляторах больших размеров и емкости. Уровень допустимого давления в призматическом аккумуляторе зависит от его конструкции и лежит в интервале 0,05-0,8 МПа;
    • метод прекращения заряда по максимальному напряжению Umax. Применяется для отключения заряда аккумуляторов с высоким внутренним сопротивлением, которое появляется в конце срока службы из-за недостатка электролита или при пониженной температуре.

При применении метода Тmax аккумуляторная батарея может быть слишком перезаряжена, если температура окружающей среды понижается, либо батарея может получить недостаточно заряда, если температура окружающей среды значительно повышается. Метод ΔT/Δt может применяться очень эффективно для прекращения заряда при низких температурах окружающей среды. Но если при более высоких температурах применять только этот метод, то аккумуляторы внутри аккумуляторных батарей будут подвергаться нагреванию до нежелательно высоких температур до того, как может быть достигнуто значение ΔT/Δt для отключения. Для определенного значения ΔT/Δt может быть получена большая входная емкость при более низкой температуре окружающей среды, чем при более высокой температуре. В начале заряда аккумуляторной батареи (как и в конце заряда) происходит быстрое повышение температуры, что может привести к преждевременному отключению заряда при применении метода ΔT/Δt. Для исключения этого разработчики зарядных устройств используют таймеры начальной задержки срабатывания датчика при методе ΔT/Δt. Метод -ΔU является эффективным для прекращения заряда при низких температурах окружающей среды, а не при повышенных температурах. В этом смысле метод похож на метод ΔT/Δt. Для обеспечения прекращения заряда в тех случаях, когда непредвиденные обстоятельства препятствуют нормальному прерыванию заряда, рекомендуется также использовать контроль по таймеру, регулирующему длительность операции заряда (метод t). Таким образом, для быстрого заряда аккумуляторных батарей нормированными токами 0,5-1С при температурах 0-50 °С целесообразно применять одновременно методы Тmax (с температурой отключения 50-60 °С в зависимости от конструкции аккумуляторов и батарей), -ΔU (5-15 мВ на аккумулятор), t (обычно для получения 120 % номинальной емкости) и Umax (1,6-1,8 В на аккумулятор). Вместо метода -ΔU может использоваться метод ΔT/Δt (1-2 °С/мин) с таймером начальной задержки (5-10 мин). Про контроль заряда так же см. соответствуюшую статью После проведения быстрого заряда аккумуляторной батареи, в зарядных устройствах предусматривают переключение их на подзаряд нормированным током 0,1С — 0,2С в течение определенного времени. Для Ni-MH аккумуляторов не рекомендуется заряд при постоянном напряжении, так как может произойти «тепловой выход из строя» аккумуляторов. Это связано с тем, что в конце заряда происходит повышение тока, который пропорционален разности между напряжением электропитания и напряжением аккумулятора, а напряжение аккумулятора в конце заряда понижается из-за повышения температуры. При низких температурах скорость заряда должна быть уменьшена. В противном случае кислород не успеет рекомбинироваться, что приведет к росту давления в аккумуляторе. Для эксплуатации в таких условиях рекомендуются Ni-MH аккумуляторы с высокопористыми электродами.

Достоинства и недостатки Ni-MH аккумуляторов

Значительное увеличение удельных энергетических параметров не единственное достоинство Ni-MH аккумуляторов перед Ni-Cd аккумуляторами. Отказ от кадмия означает также переход к более экологически чистым производствам. Легче решается и проблема утилизации вышедших из строя аккумуляторов. Эти достоинства Ni-MH аккумуляторов определили более быстрый рост объемов их производства у всех ведущих мировых аккумуляторных компаний по сравнению с Ni-Cd аккумуляторами.

У Ni-MH аккумуляторов нет «эффекта памяти», свойственного Ni-Cd аккумуляторам из-за образования никелата в отрицательном кадмиевом электроде. Однако эффекты, связанные с перезарядом оксидно-никелевого электрода, сохраняются. Уменьшение разрядного напряжения, наблюдаемое при частых и долгих перезарядах так же, как и у Ni-Cd аккумуляторов, может быть устранено при периодическом осуществлении нескольких разрядов до 1В — 0.9В. Такие разряды достаточно проводить 1 раз в месяц. Однако никель-металлогидридные аккумуляторы уступают никель-кадмиевым, которые они призваны заменить, по некоторым эксплуатационным характеристикам:

    • Ni-MH аккумуляторы эффективно работают в более узком интервале рабочих токов, что связано с ограниченной десорбцией водорода металлгидридного электрода при очень высоких скоростях разряда;
    • Ni-MH аккумуляторы имеют более узкий температурный диапазон эксплуатации: большая их часть неработоспособна при температуре ниже -10 °С и выше +40 °С, хотя в отдельных сериях аккумуляторов корректировка рецептур обеспечила расширение температурных границ;
    • в течении заряда Ni-MH аккумуляторов выделяется больше теплоты, чем при заряде Ni-Cd аккумуляторов, поэтому в целях предупреждения перегрева батареи из Ni-MH аккумуляторов в процессе быстрого заряда и/или значительного перезаряда в них устанавливают термо-предохранители или термо-реле, которые располагают на стенке одного из аккумуляторов в центральной части батареи (это относится к промышленным аккумуляторным сборкам);
    • Ni-MH аккумуляторы имеют повышенный саморазряд, что определяется неизбежностью реакции водорода, растворенного в электролите, с положительным оксидно-никелевым электродом (но, благодаря использованию специальных сплавов отрицательного электрода, получилось достигнуть снижения скорости саморазряда до величин, близких к показателям для Ni-Cd аккумуляторов);
    • опасность перегрева при заряде одного из Ni-MH аккумуляторов батареи, а также переполюсования аккумулятора с меньшей емкостью при разряде батареи, возрастает с рассогласованием параметров аккумуляторов в результате продолжительного циклирования, поэтому создание батарей более чем из 10 аккумуляторов не рекомендуется всеми производителями;
    • потери емкости отрицательного электрода, которые имеют место в Ni-MH аккумуляторе при разряде ниже 0 В, необратимы, что выдвигает более жесткие требования к подбору аккумуляторов в батарее и контролю процесса разряда, чем в случае использования Ni-Cd аккумуляторов, как правило рекомендуется разряд до 1 В/ак в батареях незначительного напряжения и до 1,1 В/ак в батарее из 7-10 аккумуляторов.

Как уже отмечалось ранее, деградация Ni-MH аккумуляторов определяется прежде всего понижением при циклировании сорбирующей способности отрицательного электрода. В цикле заряда-разряда происходит изменение объема кристаллической решетки сплава, что приводит к образованию трещин и последующей коррозии при реакции с электролитом. Образование продуктов коррозии происходит с поглощением кислорода и водорода, в результате чего уменьшается общее количество электролита и повышается внутреннее сопротивление аккумулятора. Следует заметить, что характеристики Ni-MH аккумуляторов существенно зависят от сплава отрицательного электрода и технологии обработки сплава для повышения стабильности его состава и структуры. Это вынуждает изготовителей аккумуляторов внимательно относиться к выбору поставщиков сплава, а потребителей аккумуляторов — к выбору компании-изготовителя.

По материалам сайтов pоwеrinfо.ru, «Чип и Дип»

Основное отличие Ni-Cd аккумуляторов и Ni-Mh аккумуляторов — это состав. Основа аккумулятора одинаковая — это никель, он является катодом, а аноды разные. У Ni-Cd аккумулятора анодом является металлический кадмий, у Ni-Mh аккумулятора анодом является водородный металлогидридный электрод.

У каждого типа аккумулятора есть свои плюсы и минусы, зная их вы, сможете более точно подобрать необходимый вам аккумулятор.

Плюсы Минусы
Ni-Cd
  • Низкая цена.
  • Возможность отдавать большой ток нагрузки.
  • Широкий диапазон рабочих температур от -50°C до +40°C. Ni-Cd аккумуляторы даже могут заряжаться при отрицательной температуре.
  • До 1000 циклов заряда-разряда, при правильной эксплуатации.
  • Относительно высокий уровень саморазряда (примерно 8-10%% в первый месяц хранения)
  • После длительного хранения требуется 3-4 цикла полного заряда-разряда для полного восстановления аккумулятора.
  • Обязательно полный разряд аккумулятора перед зарядкой, для предотвращения «эффекта памяти»
  • Больший вес относительно Ni-Mh аккумулятора одинаковых габаритах и ёмкости.
Ni-Mh
  • Большая удельная емкость относительно Ni-Cd аккумулятора (т.е. меньший вес при той же емкости).
  • Практически отсутствует «эффект памяти».
  • Хорошая работоспособность при низких температурах, хотя и уступает Ni-Cd аккумулятору.
  • Более дорогие аккумуляторы в сравнении с Ni-Cd.
  • Большее время зарядки.
  • Меньший рабочий ток.
  • Меньшее количество циклов заряда-разряда (до 500).
  • Уровень саморазряда в 1,5-2 раза выше, чем у Ni-Cd.

Подойдёт ли старое зарядное устройство к новому аккумулятору если я поменяю Ni-Cd на Ni-Mh аккумулятор или наоборот?

Принцип заряда у обоих аккумуляторов абсолютно одинаковый, поэтому зарядное устройство можно использовать от предыдущего аккумулятора. Основное правило зарядки данных аккумуляторов заключается в том, что заряжать их можно только после полной разрядки. Это требование является следствием того, что оба типа аккумулятора подвержены «эффекту памяти», хотя у Ni-Mh аккумуляторов эта проблема сведена к минимуму.

Как правильно хранить Ni-Cd и Ni-Mh аккумуляторы?

Лучшее место для хранения аккумулятора — сухое прохладное помещение, так как чем выше температура хранения, тем быстрее происходит саморазряд аккумулятора. Хранить батарею можно в любом состоянии кроме полного разряда или полного заряда. Оптимальный заряд — 40-60%%. Раз в 2-3 месяца следует проводить дозаряд (по причине присутствующего саморазряда), разряд и снова заряд до 40-60%% ёмкости. Допустимо хранение сроком до пяти лет. После хранения батарею следует разрядить, зарядить и после этого использовать в обычном режиме.

Можно ли использовать аккумуляторы большей или меньшей ёмкости чем аккумулятор из первоначального комплекта?

Ёмкость аккумулятора — это время работы вашего электроинструмента от аккумулятора. Соответственно для электроинструмента нет абсолютно никакой разницы по ёмкости аккумулятора. Фактическая разница будет только во времени зарядки аккумулятора, и времени работы электроинструмента от аккумулятора. При выборе ёмкости аккумулятора следует отталкиваться от ваших требований, если требуется дольше работать, используя один аккумулятор — выбор в пользу более ёмких аккумуляторов, если комплектные аккумуляторы полностью устраивали, то следует остановиться на аккумуляторах равных или близких по ёмкости.

Современный мир - это мир мобильных электронных гаджетов.

Для бесперебойной работы всех этих необходимых нам каждую минуту устройств требуется огромное количество источников питания, которые делятся на две основные группы: батареи и аккумуляторы.

Вторая группа источников является наиболее перспективной и динамично развивающейся.

Никель металлогидридные аккумуляторы стали сегодня одним из массово применяющихся её типов.

История создания

Разработки технологии никель металлогидридных аккумуляторных батарей начались ещё в 70-годы прошлого века. Это было вызвано необходимостью улучшить характеристики господствующих в то время повсюду никель-кадмиевых батарей.

Первые промышленные образцы никель гидридных аккумуляторов появились в 80-е годы. Основное направление их дальнейшего развития было направлено на дальнейшее повышение удельной энергетической ёмкости и увеличение срока службы.

В 2005 году на рынке появились первые образцы источников питания нового типа. По технологии это были никель металлогидридные батареи с пониженным током саморазряда (LSD NiMH).

Они характеризуются низким током саморазряда, увеличенным периодом хранения и превосходят своих предшественников по следующим параметрам:

Современные аккумуляторы имеют цилиндрическую или прямоугольную внешнюю форму.

Они состоят из положительного и отрицательного электродов с сепаратором между ними, помещённых в герметичный корпус.

В крышке корпуса размещён предохранительный клапан, настроенный на давление 2−4 МПа.

Он предназначен для аварийного сброса высокого давления при нештатных ситуациях в работе. Эта ситуация наиболее вероятна при нарушении условий правильной зарядки.

В NiMH аккумуляторах применяется щелочной электролит KOH с небольшой примесью LiOH. Сепаратором чаще всего является полипропиленовая или полиамидная плёнка, пропитанная смачивателем.

Положительный электрод , называемый анодом, может быть оксидно-никелевым, как и в кадмиево-никелевых батареях.

Отрицательный электрод - катод содержит активное вещество в виде металлогидридного состава и определяет основные характеристики этого типа аккумулятора.

В процессе работы объём отрицательного электрода периодически изменяется, увеличиваясь на 25 процентов относительно исходного.

Это объясняется поглощением и выделением водорода во время рабочего цикла. В начале периода эксплуатации в материале катода возникает сеть микротрещин и требуется несколько тренировочных циклов заряда-разряда для доведения основных параметров до рабочей нормы. Для увеличения срока службы рекомендуется хранить батареи в заряженном состоянии.

Достоинства и недостатки NiMH батарей

При широком выборе в продаже различных видов аккумуляторов никель металлгидридные батареи удерживают высокое место в конкуренции с никель-кадмиевыми аналогами.

Это объясняется следующими их достоинствами:

В то же время полное доминирование на рынке батареек с никель металлогидридной технологией не наблюдается.

Причиной этого стали существенные недостатки NIMH аккумуляторов:

  1. Меньший срок эксплуатации по циклам заряд-разряд.
  2. Плохо переносят пиковые нагрузки. Допустимо от 0,2С до 0,5С.
  3. Параметры ухудшаются при хранении в условиях высоких температур.
  4. Требуется усложнённый алгоритм управления зарядным устройством, так как происходит сильный нагрев при зарядке увеличенными токами, и требуется тщательный контроль параметров.
  5. Время заряда на 100 процентов больше, чем у NiCd батарей.
  6. Имеют большой ток саморазряда. При хранении полностью разряжаются за 30−60 дней.
  7. Дороже, чем никель-кадмиевые аналоги.

Следует отметить, что основные недостатки классических никель металлогидридных аккумуляторов устранены в новой серии LSD NiMH батарей, и при некотором увеличении цены старые изделия с успехом могут заменяться более технологичными новыми.

Правила использования

Аккумуляторы сегодня широко распространены в промышленности и быту. Эти устройства достаточно дороги, и знание правил грамотного их использования может значительно снизить расходы на обслуживание источников электропитания.

Для максимального продления срока службы NiMH батарей требуется:

Постоянно разрабатываются новые перспективные типы аккумуляторов.

Например, литий-ионные батареи полностью вытесняют конкурентов из области оборудования для мобильной связи. Однако для использования в силовой электронике они ещё слишком дороги. NiMH АКБ пока невозможно полностью заменить новыми аналогами, и они ещё довольно долгое время будут сохранять свои позиции в промышленности.

Внимание, только СЕГОДНЯ!

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама