THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Руководство по сборке простых ТВ-антенн для приема новых телеканалов

Дальний прием телевидения в диапазоне ДМВ

Телевизионное вещание на дециметровых волнах (ДМВ) получило широкое распространение, как за рубежом, так и в нашей стране. Диапазон ДМВ (470-1270 МГц) охватывает 80 телевизионных каналов (с 21 по 100) и имеет низкий уровень шумов и помех, что позволяет вести в нем многопрограммное высококачественное вещание. Телеприем ДМВ имеет ряд особенностей:

1. ДМВ практически не огибает земную поверхность и обладают низкой проникающей способностью, поэтому зона уверенного приема ограничивается прямой видимостью между передающей и приемной антеннами.

2. В то же время ДМВ хорошо отражаются от земной поверхности и от ионизированных слоев атмосферы. Это делает возможным прием на значительном (300-500 км) удалении от телецентра. При этом прохождение ДМВ достаточно стабильно и не имеет замираний свойственных метровым волнам (MB).

3. Характерной особенностью ДМВ является так называемое волновое распространение, при котором сигнал может быть принят на расстоянии до нескольких тыс. км от телецентра. Оно имеет место над морской поверхностью в ясные дни весенних и летних месяцев.

4. Приемные антенны ДМВ имеют значительно меньше чем антенны MB геометрические размеры. При этом мала их эффективная площадь, а следовательно, и мощность сигнала, подаваемого на вход телеприемника.

5. Чувствительность телеприемников в диапазоне ДМВ значительно ниже, чем в диапазоне MB, что связано с плохими шумовыми параметрами селектора ДМВ. Анализ перечисленных особенностей показывает принципиальную возможность дальнего и сверхдальнего приема телевидения в диапазоне ДМВ и два основных пути его реализации. Это - повышение эффективности антенной системы и реальной (ограниченной шумами) чувствительности телеприемника.

Возможности повышения коэффициента усиления антенн ДМВ на практике ограничены сложностью их конструкции и согласования с фидером.

Увеличение чувствительности телеприемника требует переделки селектора ДМВ и обычно не дает желаемых результатов. Дело в том, что в диапазоне ДМВ велико затухание сигнала в кабеле, и при использовании антенн с малым усилением не удается получить на входе телеприемника существенного выигрыша в соотношении сигнал-шум.

Наиболее оптимальным путем является использование конструктивно простой антенны с усилителем, расположенным в непосредственной близости от неё. В этом случае возможно одновременное повышение и эффективности антенны и чувствительности телеприемника без его переделки.

Антенный усилитель должен иметь большой коэффициент усиления, малый коэффициент шума, широкий диапазон рабочих температур. При этом он должен быть несложен по конструкции, собран из доступных деталей, прост в настройке и несклонен к самовозбуждению.

В результате многолетних теоретических и экспериментальных исследований нам удалось создать оптимальную по перечисленным требованиям схему и конструкцию усилителя ДМВ, не имеющего промышленных и любительских аналогов.

1. Антенный усилитель диапазона ДМВ

1.1. Параметры и схема усилителя

Усилитель обладает следующими параметрами:

Коэффициент усиления Ку и коэффициент шума Fш в диапазоне
470-630 МГц (21-40 каналы) - Ку ≥ 30 дБ, Fш ≤ 2,0 дБ;
630-790 МГц (41-60 каналы) - Ку ≥ 25 дБ, Fш ≤ 2,5 дБ;
790-1270 МГц (61-100 каналы) - Ку ≥ 15 дБ, Fш ≤ 3,5 дБ.

Входное и выходное сопротивление - 75 Ом
- напряжение питание - 9-12 В
- диапазон рабочих температур - (-30...+40) °С.

Схема усилителя приведена на рис. 1. Он содержит два каскада на транзисторах VT1 и VT2, включенных по схеме с общим эмиттером. Для получения максимального усиления эмиттеры транзисторов соединены непосредственно с общим проводом. Нагрузками каскадов являются широкополосные контуры L2, R2, L3, С4 и L4, R6, L5, С10, обеспечивающие согласование их входных и выходных сопротивлений. Контур L1, С1 является фильтром верхних частот (частота среза 400 МГц), служащим для устранения помех от телепередатчиков MB диапазона. Конденсаторы СЗ, С5, С7, С8 - блокировочные. Питание усилителя осуществляется по коаксиальному кабелю, соединяющему его с телевизором, через фильтр нижних частот L6, R8, С11. Непосредственно перед телевизором сигнал ДМВ и напряжение питания разделяются фильтром С12, L7, С13.

Режимы транзисторов по постоянному току задаются резисторами R1 и R5 так, чтобы получить оптимальные значения коллекторных токов I1 и I2 транзисторов VT1 и VT2. Ток I1 выбирается из условия получения минимального коэффициента шума первого каскада, а I2 - из условия получения максимального усиления второго каскада.

1.2. Детали и конструкция усилителя

Все резисторы усилителя МЛТ-0,125. Конденсаторы С1, С2, С4- С7, С9, С10 - малогабаритные дисковые (типов КД, КД-1 и т.п.); СЗ, С8 и С11 - типа КМ-5б, КМ-6 и т.п.

Все катушки усилителя бескаркасные. Катушка L1 содержит 2,75 витка посеребренного провода диаметром 0,4-0,8 мм, её наружный диаметр 4 мм, межвитковое расстояние - 0,5 мм. Катушки L2- L5 представляют собой выводы резисторов R2 и R5, намотанные на оправку диаметром 1,5 мм, так чтобы межвитковое расстояние составляло 0,5 мм, и содержит по 1,5 витка. Направления намоток L2, L3 и L4, L5 должны быть одинаковы (т.е., например, L2 и L3 представляют собой катушку из 3-х витков, в разрыв которой включен резистор R2). Катушка L6 содержит 15-20 витков медного эмалированного провода диаметром 0,3 мм, намотанных виток к витку на оправку диаметром 3 мм. Дроссель L7 - стандартный типа ДМ-0,1 с индуктивностью более 20 мкГн. Стабилитрон VD1 - любой с напряжением стабилизации 5,5-7,5 в.

В усилителе могут быть использованы СВЧ малошумящие транзисторы с граничной частотой fгр. более 2 ГГц. Если усилитель будет работать в диапазоне 21-60 каналов, то можно применять транзисторы с fгр. более ГГц, а если - только в диапазоне 21-40 каналов, то - с fгр. более 800 МГц. при этом необходимо в первый каскад ставить транзистор с меньшим коэффициентом шума, а во второй - с большим коэффициентом усиления. В табл. 1 приведены параметры транзисторов, которые можно использовать в усилителе. Транзисторы расположены в порядке ухудшения параметров.


Не рекомендуется применять транзисторы КТ372 из-за их склонности к самовозбуждению и ГТ346 - из-за плохих шумовых параметров. Если используются р-п-р транзисторы, то необходимо изменить полярность источника питания усилителя.

Усилитель собран на печатной плате из фольгированного стеклотекстолита толщиной 1-1,5 мм. Рисунок печатной платы и схема монтажа деталей на ней приведены на рис. 2. Плата рассчитана на использование транзисторов с планарными выводами (КТ3132, КТ3101, КТ391 и т.п.), которые припаиваются непосредственно к контактным площадкам со стороны фольги. Однако она допускает и монтаж транзисторов с другим расположением выводов (КТ399, КТ3128 и т.п.), но со стороны монтажа, для чего необходимо просверлить в плате соответствующие отверстия под выводы (см. ниже).

Выводы транзисторов должны иметь минимальную длину, особенно вывод эмиттера, который не должен превышать 4 мм. Выводы конденсаторов С4, С5, С7 и С10 должны быть не более 4 мм, а конденсаторы С1, С2, С6 и С9 - составлять 4-6 мм (они являются дополнительными индуктивностями, включёнными в контура). Одни из выводов конденсаторов С1 и С2 впаяны в плату, а другие - припаяны непосредственно к центральной жиле входного коаксиального кабеля. Конденсаторы С6 и С9 одним концом припаяны к очищенным от краски головкам резисторов R2 и R6. Другой конец С6 в плату, а С9 - припаян к центральной жиле выходного коаксиального кабеля. Конденсатор С2 одним концом впаян в плату, а другим концом припаян к катушке L1 на расстоянии 3/4 витка от верхнего по схеме конца. Резисторы R3, R4, R7 и R8 установлены вертикально.

Печатная плата помещена в прямоугольный герметичный корпус, разделённый на 4 части экранирующими перегородками (рис. 2, 4). Чертежи деталей корпуса приведены на рис. 3. Он состоит и боковой стенки 1, втулки 2, перегородки 3, 4 и крышек 5. Детали 1, 3, 4 и 5 изготовляют из листовой латуни (удобно использовать отожженную над газовой горелкой пластину фотоглянцевателя), детали 2 вытачиваются из латунного прутка. Втулки 2 рассчитаны на то, что вход и выход усилителя выполнены 75-омным коаксиальным кабелем с наружным диаметром по изоляции 4 мм. Можно использовать другой 75-омный кабель, но в этом случае необходимо соответственно изменить диаметры втулок 2 и отверстий в стенке корпуса 1.

Разделительный фильтр питания L7, С12, С13 монтируют в отдельной коробочке произвольной конструкции, на которой устанавливают входное антенное гнездо и выходной антенный штекер.

Питать усилитель можно от любого стабилизированного источника 9-12 В, например, от имеющихся в продаже блоков питания транзисторных приемников БП9В, Д2-15 и т.п.

Можно также смонтировать элементы фильтра внутри телевизора рядом с антенным входом ДМВ, а для питания усилителя использовать напряжение 12 В с селектора ДМВ.

1.3. Монтаж и настройка усилителя

Собирают усилитель в следующей последовательности. Монтируют на плате все элементы кроме резисторов R1 и R5. Если используются транзисторы не с планарными выводам, то для них сверлят в плате отверстия, а в перегородках 4 делаются прямоугольные вырезы (на рис. 3 показаны штриховой линией). В плату впаиваются соответствующими выступами перегородки 3 и 4. Сгибают и спаивают боковую стенку корпуса 1. В неё герметично впаивают втулку 2. Входной 7 и выходной 8 коаксиальные кабели длиной по 80 см вставляют в отверстия втулок, оплетку разделяют на 2 части и припаивают к корпусу изнутри. Центральная жила кабелей должна выступать внутрь корпуса на 3-4 мм. Вставляют плату в корпус, так чтобы кромки перегородок 3, 4 и кромка стенки 1 лежали в одной плоскости (рис. 4), и пропаивают стыки перегородок между собой и корпусом. Кроме того в 10-ти точках припаивают нечетную плату к стенке 1. Места пайки показаны на рис. 2 и рис. 4. Припаиваются к центральным жилам кабелей элементы С1, L1 и С9, L6. Внимательно сверяют рис. 1, 2 и 4 правильности монтажа.

Далее производят настройку усилителя. Для этого по выходному кабелю 8 подают на усилитель питание. Измеряя напряжение U1 на резисторе R3 подбором резистора R1 устанавливают значение тока I1 (I1 = U1/R3) в соответствии с табл. 1 для транзистора первого каскада. Впаивают в плату подобранный резистор R1. Аналогичную процедуру проделывают для второго каскада, измеряя напряжение U2 на резисторе R7 и устанавливая ток I2 = U2/R7 в соответствии с табл. 1. Впаивают резистор R5. На рис. 1 величины R1 и R5 даны ориентировочно, реально они могут значительно отличаться от указанных. Проверяют отсутствие самовозбуждения усилителя. Для этого подключают параллельно R3 вольтметр и касаются пальцем вывода коллектора транзистора VT1. Если первый каскад не возбуждается, то показание вольтметра не изменится. Аналогично проверяют второй каскад. Устранить самовозбуждение (о его наличии свидетельствует резкое уменьшение тока транзистора при его касании пальцем) можно лишь заменой транзистора. Следует отметить, что усилитель не склонен к самовозбуждению - из нескольких десятков изготовленных усилителей возбуждался лишь один, собранный на транзисторах КТ372А. Проверяют потребляемый усилителем ток, которых должный быть равен: I1 + I2 = 10 мА; при необходимости подбирают резистор R8, так чтобы ток через стабилитрон VD1 составлял около 10 мА. Заключительной операцией является герметизация усилителя. Для этого крышки 5 пропаивают по периметру корпуса, а места ввода коаксиального кабеля дополнительно промазываю каким-либо герметиком, водостойким клеем и т.п. Затем усилитель крепят к мачте антенн.

2. Антенна ДМВ

Как указывалось выше, добиваться очень большого коэффициента усиления антенны ДМВ не имеет смысла, поскольку это ведет к неоправданному усложнению её конструкции. Однако и рассчитывать на дальний прием с малоэффективной антенной тоже не приходится.

Опыт конструирования и использования антенн ДМВ показывает, что наиболее простой и в то же время весьма эффективной является Z-антенна с рефлектором. Её отличительными особенностями является широкополостность, большой коэффициент усиления, хорошее согласование непосредственно с 75-омным коаксиальным кабелем и некритичность размеров.

Конструкция антенны для 21-60 каналов показана на рис. 5. Если антенна будет использоваться в диапазоне 61-100 каналов, то все её размеры необходимо уменьшить в 1,5 раза. Активное полотно 1 антенны изготавливается из алюминиевых полос и скрепляется «внахлест» винтами с гайками. В точках соприкосновения пластин должен быть надежный электрический контакт. На матче 6 (она может быть металлической или деревянной) полотно закрепляется при помощи стоек-опор 2 в точках С и D. Поскольку эти точки имеют нулевой относительно земли потенциал, то стойки 2 могут быть металлическими. Кабель 3 подсоединяется к точкам А и В (оплетка - к одной точке, а жила - к другой) и прокладывается вдоль полотна по нижней стойке 2 и по матче 6 к усилителю 7. Закрепляется кабель проволочными хомутиками. Полотно 1 может быть само по себе использовано как антенна. Её коэффициент усиления составляет 6-8 дБ. Однако лучше снабдить полотно рефлектором.

Простейший рефлектор 4 (рис. 5б) представляет собой плоский экран, изготовленный из трубок или отрезков толстого провода. Диаметр элементов рефлектора некритичен и может быть 3-10 мм. Антенна с плоским рефлектором имеет коэффициент усиления 8-10 дБ. Поднять коэффициент усиления до 15 дБ (эквивалентно 40-элементной антенне «волновой канал») позволяет сложный рефлектор типа «полуразвалившийся короб» (рис. 5в). Конструктивное исполнение такого рефлектора может быть самым различным, в зависимости от Ваших возможностей.

Пространственная ориентация антенны, изображённая на рис. 5 соответствует приему сигналов с горизонтальной поляризацией. Для приема вертикально-поляризованных сигналов необходимо полотно и рефлектор повернуть на 90°.

Усилитель ДМВ располагают в непосредственной близости от антенны (см. рис. 5). Вход усилителя с полотном антенны соединяют тем же кабелем, что заделан в усилитель. Входной кабель усилителя наращивают кабелем снижения. Желательно, чтобы он был как можно большего диаметра (от этого зависят потери в кабеле), использовать кабель диаметром 4 мм можно лишь в том случае, если его длина не превышает 10 м.

Соединения кабелей должно выполняться «ветик», так чтобы минимальным образом нарушалась коаксиальная структура фидера.

Если нет возможности изготовить описанную антенну, то усилитель может быть с несколько худшими результатами использован с промышленными наружными широкополосными антеннами ДМВ, например, типа, АТНГ(В)-5.2.21-41 (торговое название «ГАММА-1»).

Установка антенны определяется тем, на какой тип прохождения ДМВ вы рассчитываете. Если необходимо вести прием непосредственно за зоной обслуживания телецентра (60-200 км), то антенну следует установить так, чтобы в направлении прихода сигналов между ней и линией горизонта не было препятствий (дома, холмы и т.п.). Если же Вы ориентируетесь на сверхдальний прием при тропосферном или волновом распространении (при этом сигнал приходит «с неба» под углом 5-10° к горизонту), то не очень близко расположенные препятствия обычно помехой не является.

ЗАКЛЮЧЕНИЕ

В заключение несколько слов о практических результатах приема ДМВ. Изготовление по прилагаемому описанию антенны с усилителем в течение нескольких лет использовался в г. Одессе для регулярного приема сигналов Кишиневского телецентра (расстояние - 160 км). За городом, в зоне радиотени для MB телецентра, уверенно принимаются сигналы маломощных ДМВ ретрансляторов, находящихся на противоположной стороне Одесского залива (расстояние - 60-80 км). В ясные дни весенних и летних месяцев с хорошим качеством ведется прием болгарской программы БТ2 из Варны (расстояние - 500 км) и турецкой программы TV2 из Стамбула (расстояние более 600 км).

© "Энциклопедия Технологий и Методик" Патлах В.В. 1993-2007 гг.

Как уже отмечалось, сверхдальний прием телевизионных передач наблюдается сравнительно редко, сеансы его непродолжительны и не поддаются прогнозированию. Сверхдальний прием возможен при случайно сложившихся благоприятных условиях распространения сигнала. Рассмотрим, каковы же эти условия и чем объясняется сверхдальний прием телевидения?

Как известно, основой распространения радиоволн длинноволнового и средневолнового диапазонов является земная волна, которая характеризуется тем, что энергия электромагнитного поля огибает земную поверхность за счет преломления в атмосфере. Это преломление происходит благодаря уменьшению плотности воздуха с высотой. Радиоволны коротковолнового диапазона слабо преломляются в атмосфере, но способны отражаться от верхних ионизированных ее слоев.

Долгое время считалось, что радиоволны метрового диапазона не огибают поверхность земли (не подвержены рефракции) и не отражаются ионосферой. Это, однако, оказалось не так. Степень ионизации слоев ионосферы резко возрастает в годы солнечной активности, а также и по другим причинам. Это приводит к образованию условий, способствующих отражению волн метрового диапазона. Наиболее важными в этом отношении являются слой Е, расположенный на высоте 95... 120 км над поверхностью земли, и слой F2, расположенный на высоте 230... 400 км. Считается, что образование слоя Е связано с ионизацией молекул азота и кислорода рентгеновским и ультрафиолетовым излучением Солнца, а образование слоя F2 - ионизацией тех же газов ультрафиолетовым и корпускулярным излучениями Солнца. Слой Е характеризуется большим постоянством электронной концентрации изо дня в день, которая возрастает днем и уменьшается ночью, а слой F является неустойчивым образованием. В этом слое как электронная концентрация, так и высота расположения ее максимума в разные дни колеблются в значительных пределах. Однако днем концентрация электронов в этом слое также выше, чем ночью, и, кроме того, зимой она значительно больше, чем летом. В предрассветные часы наблюдается глубокий минимум электронной концентрации слоя F2.

Время от времени в области Е образуется сильно ионизированный слой, который называют "спорадическим слоем Е". Интенсивность спорадического слоя Е во много раз выше интенсивности нормального слоя Е. Исследования показали, что спорадический слой Е представляет собой скопление электронных облаков, которые имеют горизонтальную протяженность в десятки и сотни километров и движутся со скоростью до 300 км/ч. Время существования этого слоя колеблется в широких пределах, но не превышает нескольких часов. Спорадический слой Е может возникать в любое время суток и года, однако в средних широтах он чаще образуется в летние дни. Предполагается, что образование спорадического слоя Е связано с просачиванием заряженных частиц из выше расположенных слоев и с потоками метеоров. Подобно тому как радиоволны длинноволнового и средневолнового диапазонов преломляются в атмосфере, радиоволны У К В диапазона преломляются в ионосфере. Степень преломления зависит от электронной концентрации слоя и от длины радиоволны или ее частоты.

Чем больше частота волны, тем более высокая концентрация электронов требуется для того, чтобы за счет преломления и полного внутреннего отражения волна вернулась на -емлю. Кроме того, доказано, что в точке отражения волны электронная концентрация обязательно должна возрастать с высотой. Отражение не может происходить в области максимума и тем более в области уменьшения электронной концентрации с высотой. Непостоянство электронной концентрации в ионизированных слоях, ее изменения в течение года и в течение суток, кратковременность и случайность спорадического слоя Е приводят к тому, что условия достаточного преломления и полного внутреннего отражения, необходимые для возврата радиоволн на землю, возникают также случайно, длятся кратковременно и не прогнозируются.

Измеренные с помощью геофизических ракет электронные концентрации различных слоев в разное время объясняют, почему сверхдальний прием телевидения наблюдается только в пределах первого диапазона (1-й и 2-й телевизионные каналы). Частота волн последующих диапазонов больше и требует для возврата волны на землю таких электронных концентраций, которых в слоях не бывает. Волны этих диапазонов от ионосферы не отражаются, а пронизывают ее насквозь. Сверхдальний прием телевизионных программ обусловлен появлением слоя F2 и спорадического слоя Е. Однако электронная концентрация нормального слоя Е недостаточна для отражения волн телевизионного диапазона, следовательно, и сверхдальнего приема не происходит.

Согласно законам преломления луч, падающий на преломляющую поверхность нормально (под прямым углом), не преломляется. Чем более полого падает луч на преломляющую поверхность, тем больше вероятность того, что будут достигнуты условия для полного внутреннего отражения, тем меньшая электронная концентрация для этого потребуется. Поэтому сверхдальний прием телевидения наблюдается только на больших расстояниях (около 1000 км и более) от телевизионного передатчика, а меньшие расстояния для сверхдальнего приема образуют мертвую зону.

Протяженность электронных облаков и электронная концентрация ионизированных слоев изменяются в широких пределах. Поэтому также в широких пределах изменяется напряженность поля телевизионного сигнала при появлении сверхдальнего приема. Эти пределы настолько широки, что иногда оказывается возможен сверхдальний прием с хорошим качеством изображения даже при использовании комнатных антенн, как это наблюдалось в 1957 г. Тем не менее вероятность получения устойчивого изображения при сверхдальнем приеме увеличивается при использовании высокоэффективных антенн и высокочувствительных телевизионных приемников. Из числа таких приемников можно рекомендовать телевизор для дальнего приема Н. Швырина, описание которого приводилось в журнале "Радио" 12 за 1972 г. Этот телевизор пригоден для приема сигналов с разными стандартами разложения изображения. Однако следует учесть, что постройка такого телевизора, а особенно его налаживание и настройка доступны лишь очень опытным радиолюбителям. К тому же в журнале приводилось недостаточно подробное описание, Для опытов по сверхдальнему приему можно использовать и обычный телевизионный приемник черно-белого изображения промышленного производства, приняв меры к улучшению его чувствительности.

В качестве антенн целесообразно использовать узкополосные антенны с большим коэффициентом усиления, например, двухрядную синфазную решетку из трехэлементных рамочных антенн, построенную по размерам для первого канала. Установить антенну желательно на высокой мачте, а если длина фидера превысит 50 м, использовать малошумящий антенный усилитель, установив его на мачте в непосредственной близости от антенны. В связи с тем, что заранее неизвестно, с какого направления окажется возможным осуществить сверхдальний прием при сложившихся благоприятных условиях распространения сигнала, необходимо иметь возможность быстро и оперативно ориентировать антенну. Для этого антенну устанавливают на поворотной мачте, которая может вращаться с приводом от реверсивного электродвигателя, оснащенного редуктором с большим коэффициентом передачи. Благодаря такому редуктору мощность двигателя может быть небольшой, так как момент вращения с вала двигателя увеличивается пропорционально коэффициенту передачи редуктора. Естественно, что выходные шестерни редуктора должны быть рассчитаны на большие усилия. Во избежание скручивания фидера система поворота антенной мачты должна быть оснащена концевыми выключателями питания электродвигателя, которые ограничивают поворот мачты. Эти же концевые выключатели могут быть использованы для сигнализации о достижении предельного поворота антенны. Некоторые радиолюбители дополняют систему дистанционного поворота антенны парой сельсинов. Это дает возможность по шкале, установленной на оси сельсина-приемника, определять направление антенны в любом ее положении.

Конечно, в тех случаях, когда установка для сверхдальнего приема предназначена для приема телевизионных передач одного определенного телецентра, нет нужды антенну выполнять поворотной. В этом случае антенна ориентируется по направлению на передатчик раз и навсегда при ее установке.

В первую очередь необходимо четко разграничить уверенный и случайный прием. Уверенным называется прием передач определенного передатчика, который осуществляется независимо от условий погоды, солнечной активности, времени года, суток и других факторов. Случайный прием зависит от перечисленных факторов и возможен лишь при благоприятно сложившихся условиях.

  • Уверенный прием телевидения обеспечивается за счет распространения прямой или, как говорят, “земной” волны вдоль поверхности Земли. Ультракороткие волны, используемые в телевидении, распространяются прямолинейно и почти не отражаются ионосферой. Поэтому максимально возможная дальность приема должна определяться расстоянием прямой видимости передающей антенны из точки, где установлена приемная антенна. Исходя из сферической формы поверхности Земли, расстояние прямой видимости должно равняться

где D—расстояние прямой видимости в км; Н—высота передающей антенны в м; h—высота приемной антенны в м (рис. 1).

  • В действительности уверенный прием телевизионных передач оказывается возможным на большем расстоянии, чем расстояние прямой видимости, за счет некоторого огибания распространяющимся сигналом земной поверхности, а также за счет переотражения сигнала различными местными предметами. Область, в пределах которой оказывается возможен уверенный прием, можно разбить на две зоны: зону прямой видимости и зону полутени. В зоне прямой видимости уверенный прием возможен с помощью обычных антенн. В зоне полутени напряженность поля сигнала мала, что вынуждает для уверенного приема использовать высокоэффективные антенны. При достаточно большой мощности передатчика на равнинной местности зона полутени ограничена расстоянием 200...220 км от передатчика, работающего на 1—5-м каналах, 120...150 км от передатчика, работающего на 6—12-м каналах, а для дециметрового диапазона зоны полутени практически не существует. Указанные границы не являются резкими, значительно размыты и очень приближенны, так как не учитывают фактического рельефа местности. При наличии горных преград даже вблизи передатчика уверенный прием может оказаться невозможным. На ровной же местности за границей зоны полутени уровень напряженности поля равен нулю и уверенный прием также оказывается невозможен даже при использовании высокоэффективных антенн.

    В отличие от уверенного приема случайный прием иногда наблюдается на расстояниях в несколько тысяч километров и поэтому называется сверхдальним приемом. Сверхдальний прием связан с аномальными состояниями ионосферы, наблюдается крайне редко, как правило, только на 1—2-м каналах. Сеансы его непродолжительны — от нескольких минут до нескольких часов — и совершенно не поддаются прогнозу. Ориентироваться на сверхдальний прием нет смысла.

  • Основной характеристикой телевизора, которая определяет возможность дальнего приема, является чувствительность. Чем меньше значение чувствительности, тем дальнобойнее приемник. Однако существует несколько понятий чувствительности, что вносит путаницу, если не понимать различия между ними или не указывать, о какой чувствительности идет речь.

    Чувствительность, ограниченная усилением,— это минимальное напряжение сигнала на входе телевизора, при котором обеспечивается номинальный уровень сигнала на модуляторе кинескопа. Номинальным уровнем принят размах напряжения, соответствующий уровням белого и черного на экране. Чувствительность, ограниченная синхронизацией,— это минимальное напряжение сигнала на входе телевизора, при котором еще достигается устойчивая синхронизация изображения. Наконец, чувствительность, ограниченная шумами,— это минимальное напряжение сигнала на входе телевизора, при котором обеспечивается номинальный уровень сигнала на модуляторе кинескопа при его превышении над уровнем шумов на 20 дБ (т. е. в 10 раз по напряжению). Во всех случаях имеется в виду чувствительность канала изображения.

    Видно, что чувствительность, ограниченная усилением, характеризует лишь коэффициент усиления приемно-усилительного тракта. Чем больше коэффициент усиления, тем меньше (т. е. лучше) чувствительность, ограниченная усилением. Отсюда путем простого увеличения количества усилительных каскадов можно достичь как угодно малого значения чувствительности, ограниченной усилением. Это приводит к наиболее распространенному заблуждению, когда в условиях дальнего приема пытаются его улучшить за счет использования различных усилительных приставок. Чувствительность, ограниченная усилением, отнюдь не характеризует возможность приема слабых сигналов телевизионным приемником, так как не учитывает влияние собственных шумов телевизионного приемника. Шум каждого каскада усиливается последующими каскадами наравне с сигналом. Наиболее сильно усиливается шум первого каскада, так как он усиливается всеми каскадами. Если уровень шумов на выходе приемника разделить на его коэффициент усиления, получится уровень шумов, приведенный ко входу этого приемника. Наиболее важен уровень шумов первого каскада приемника, а шумами последующих каскадов можно пренебречь. Очевидно, что напряжение шумов, приведенных ко входу приемника, не зависит от количества каскадов и от коэффициента усиления приемного тракта. Чем больше коэффициент усиления тракта, тем меньшее напряжение сигнала нужно подать на вход приемника, чтобы получить на выходе номинальный сигнал, и тем лучше (меньше) чувствительность, ограниченная усилением. Однако ясно, что при подаче на вход приемника сигнала, меньшего по уровню, чем напряжение шумов, приведенных ко входу, такой слабый сигнал будет забит шумами. На экране телевизора при этом изображения не получится, а будут видны лишь шумы в виде хаотических мерцающих белых и черных точек. В таком случае говорят, что на экране виден снег. Чтобы получить изображение на экране, напряжение сигнала должно превышать напряжение шумов. Чем больше напряжение сигнала на входе телевизора по сравнению с напряжением шумов, приведенных ко входу, тем качество изображения будет лучше. Для оценки соотношения между напряжением сигнала и напряжением шумов принято брать их отношение.

    Чувствительность, ограниченная шумами, учитывает наличие собственных шумов телевизионного приемника и характеризует его способность принимать слабые сигналы, то есть работать в условиях дальнего приема. Чувствительность, ограниченная шумами, измеряется при определенном отношении сигнал/шум, равном 10 на модуляторе кинескопа. В связи с тем что в телевидении кроме несущей частоты изображения передается только одна боковая полоса частот, а вторая боковая подавляется, коэффициент усиления сквозного тракта для сигнала в два раза меньше, чем для шумов. Поэтому для получения на выходе приемника отношения сигнал/шум, равного 10, на входе приемника это отношение должно быть равно 20. Указанное отношение сигнал/шум при определении чувствительности принято условно, так как оно соответствует очень плохому качеству изображения, обеспечивается лишь разборчивость крупных деталей. Для получения изображения хорошего качества отношение сигнал/шум на входе телевизора должно быть не менее 100. Таким образом, если известно, что чувствительность, ограниченная шумами, для какого-то телевизора составляет, например, 70 мкВ, подача на антенный вход этого телевизора такого сигнала обеспечит лишь получение разборчивого изображения плохого качества. Для получения же хорошего изобра жения напряжение сигнала на входе телевизора должно быть в 5 раз больше, то есть 350 мкВ.

    Сравнивая значения чувствительности, ограниченной шумами, для разных типов телевизоров, можно выбрать такой тип телевизора, который наиболее подходит для условий дальнего приема, то есть имеет минимальное значение чувствительности.

    Для нормальной работы всей схемы телевизора он должен иметь запас усиления. Поэтому обычно чувствительность, ограниченная усилением, имеет меньшее значение, чем чувствительность, ограниченная шумами. Чувствительность, ограниченная синхронизацией, представляет собой промежуточную величину и гарантирует лишь устойчивую синхронизацию без учета качества изображения. Поэтому ее значение не может быть положено в основу определения пригодности телевизора для работы в условиях дальнего приема.

    Следует учесть, что если не указано, о какой чувствительности телевизора идет речь, нужно понимать чувствительность, ограниченную усилением. Сравнивать между собой телевизоры по этой характеристике для определения их пригодности для дальнего приема нельзя.

    Все разработанные после 1979 г. черно-белые и цветные стационарные и переносные телевизоры обладают чувствительностью, ограниченной шумами, в диапазонах метровых волн — 100 мкВ, а в диапазонах дециметровых волн — 140 мкВ. Согласно ГОСТу эти значения являются предельными, фактическая чувствительность может быть лучше. Телевизоры, разработанные ранее 1979 г., могут иметь другие значения чувствительности. Худшей чувствительностью, ограниченной шумами,— 150 мкВ в диапазонах MB и 500 мкВ в диапазонах ДМВ — обладают телевизоры типа УПИМЦТ-61, в названия которых входят индексы Ц-201 и Ц-202. Эти телевизоры менее пригодны для дальнего приема.

    Из определения чувствительности, ограниченной, шумами, видно, что она определяется уровнем собственных шумов телевизионного приемника, приведенным к его входу. Уровень шумов определяется в основном конструкцией первого каскада усиления в селекторе каналов, типом и режимом лампы или транзистора, которые используются в этом каскаде. Для современных селекторов каналов напряжение шумов на входе составляет примерно 5 мкВ в диапазонах MB и 7 мкВ в диапазонах ДМВ. Отсюда и получается чувствительность, равная 100 и 140 мкВ (в 20 раз больше уровня шумов). По этой причине улучшение чувствительности, ограниченной шумами, может быть достигнуто исключительно путем снижения уровня собственных шумов, приведенного к входу, но не за счет увеличения коэффициента усиления приемного тракта заменой в нем ламп, транзисторов или использованием каких-либо усилительных приставок.

    Радикальных мер уменьшения уровня собственных шумов телевизионного приемника без ухудшения качества изображения в настоящее время не имеется. Используемые в первых каскадах селекторов каналов СВЧ транзисторы ГТ346А имеют коэффициент шума при внутреннем сопротивлении источника сигнала 75 Ом, равный 7 дБ. Это — наименее шумящие из отечественных транзисторов р-п-р структуры. Если использовать в первом каскаде селектора каналов зарубежный транзистор типа AF251 с коэффициентом шума 4,8 дБ, уровень шумов уменьшится на 2,2 дБ, и чувствительность телевизора, ограниченная шумами, сможет быть улучшена до 80/110 мкВ. Однако приобретение малошумящих транзисторов зарубежного производства представляет собой трудновыполнимую задачу.

    Значительно проще решается вопрос, если в целях улучшения чувствительности допустить некоторое ухудшение четкости изображения по горизонтали за счет сужения полосы пропускания. В условиях дальнего приема паспортная четкость изображения телевизора не реализуется, так как малоконтрастное изображение поражено интенсивной шумовой помехой. Как известно, четкость по горизонтали пропорциональна полосе пропускания приемно-усилительного тракта, а напряжение собственных шумов пропорционально корню квадратному из полосы пропускания. Если сузить полосу пропускания в 2 раза, четкость ухудшится также в 2 раза, до 250 элементов, что в условиях дальнего приема можно считать вполне приемлемым, а уровень собственных шумов уменьшится на 3 дБ, что соответствует улучшению чувствительности до 70/100 мкВ. При этом качество изображения субъективно улучшается за счет двух факторов: ослабления шумовой помехи и увеличения контрастности (так как сужение полосы пропускания приводит к увеличению коэффициента усиления тракта).

    Проще всего сузить полосу пропускания можно путем увеличения сопротивлений нагрузки видеодетектора и видеоусилителя. В черно-белых телевизорах УЛПТ-61-II-22 и УЛПТ-61-II-28 увеличивают сопротивления резисторов 3-R42 и 3-R47, в телевизорах УЛТ-50-III-2 и ЗУЛПТ-50-III-1 — 2-Р13 и 2-R22, в телевизорах 2УПИТ-61-II-1/2 и УСТ-61-3/4—Р25 и R26. В телевизорах цветного изображения сужение полосы пропускания может привести к пропаданию цветности, и изображение будет воспроизводиться черно-белым. Не следует стремиться к чрезмерному увеличению сопротивлений указанных резисторов, особенно в каскадах видеоусилителя, во избежание нарушения нормальных режимов электронных ламп и транзисторов. Можно считать допустимым увеличение сопротивлений нагрузки видеодетектора примерно в 2 раза и сопротивлений нагрузки видеоусилителя в 1,2 раза. При этом изменение режима оказывается в пределах допуска, а полоса пропускания сужается примерно в 2 раза.

    Очевидно, что для получения на экране телевизора изображения, на его антенный вход необходимо подать сигнал, уровень которого должен быть выше чувствительности данного телевизионного приемника, ограниченной шумами. От того, насколько уровень сигнала будет превышать чувствительность, зависит качество изображения. Если нет возможности воздействовать на чувствительность для ее значительного улучшения, нужно постараться увеличить уровень сигнала на антенном входе телевизора, чтобы он оказался больше значения чувствительности.. Чем определяется уровень сигнала на входе телевизионного приемника? В первую очередь уровнем напряженности электромагнитного поля в той точке пространства, в которой находится приемная антенна, коэффициентом усиления этой антенны, ее действующей длиной и, наконец, затуханием сигнала в фидере, которым антенна соединена с телевизором. Конечно, антенна должна быть хорошо согласована с фидером, а фидер — с телевизором, иначе появятся дополнительные ослабления сигнала за счет его отражения и излучения обратно в пространство.

    Напряженность поля в точке приема зависит от мощности передатчика, расстояния до этого передатчика, рельефа местности на трассе, затухания сигнала в атмосфере. Радикально воздействовать на уровень напряженности поля в точке приема нет возможности. Но обычно имеется выбор места расположения антенны, и можно, проделав несколько экспериментов, выбрать оптимальное положение антенны на крыше здания и высоту ее расположения, соответствующие максимальному уровню сигнала на входе телевизора. Действующая длина антенны зависит исключительно от длины волны принимаемого сигнала, то есть от номера канала: чем меньше длина волны (чем больше номер канала), тем меньше действующая длина антенны. Таким образом, в целях увеличения уровня сигнала на входе телевизора остается возможность воздействия на коэффициент усиления антенны и затухание сигнала в фидере.

    Коэффициент усиления антенны показывает, во сколько раз напряжение сигнала на выходе данной антенны превышает напряжение сигнала на выходе полуволнового вибратора, помещенного в ту же точку электромагнитного поля. Коэффициент усиления может также выражаться в децибелах. Чем больше коэффициент усиления антенны, тем больше будет напряжение сигнала на входе телевизора при прочих равных условиях. Поэтому в условиях дальнего приема необходимо использовать антенны с большим коэффициентом усиления. Характерно, что увеличение коэффициента усиления антенны не приводит к увеличению уровня шумов. Если улучшение чувствительности телевизионного приемника, ограниченной шумами, и выбор оптимального расположения антенны позволяют лишь в небольших пределах улучшить прием, то использование высокоэффективной антенны может привести к увеличению уровня сигнала во много раз. Таким образом, выбор антенны является решающим фактором при дальнем приеме. И чем более высокочастотный сигнал необходимо принимать (чем больше номер канала), тем больше должен быть коэффициент усиления антенны. Это связано с тем, что действующая длина антенны пропорциональна длине волны сигнала. Поэтому при одинаковой напряженности поля двух сигналов, например 1-го и 12-го каналов, и использовании однотипных антенн с одинаковым коэффициентом усиления напряжение сигнала на выходе антенны 12-го канала окажется в 4,3 раза меньше, чем на выходе антенны 1-го канала. Только по этой причине для получения одинакового напряжения сигнала на входе телевизора коэффициент усиления антенны 12-го канала должен быть больше коэффициента усиления антенны 1-го канала в 4,3 раза по напряжению, что соответствует 12,7 дБ. В дециметровом диапазоне необходимость использования антенн с повышенным коэффициентом усиления по этой причине еще больше возрастает.

    В том частотном диапазоне, который отведен для телевидения, используются различные типы высокоэффективных антенн. В профессиональной аппаратуре (радиосвязь, радиолокация и т. п.) предпочтение обычно отдается многоэлементным антеннам типа “Волновой канал”. В любительских же условиях применение таких антенн нецелесообразно по следующим причинам. Многоэлементные антенны нуждаются в тщательной настройке, которая производится путем изменения размеров каждого элемента антенны и расстояний между ними. Настройка производится в полигонных условиях по приборам при контроле формы диаграммы направленности антенны, величины и характера ее входного сопротивления. Произвести такую настройку антенны радиолюбитель не в состоянии. Многоэлементная антенна, даже в том случае, если она выполнена точно по чертежам, оказывается расстроенной, подобно тому как оказывается расстроен многоконтурный радиоприемник сразу после сборки. В результате такой расстройки параметры антенны получаются значительно хуже паспортных, и положительного эффекта такая антенна не дает. У расстроенной антенны искажается форма и расширяется главный лепесток диаграммы направленности, увеличиваются боковые и задний ее лепестки, что приводит к уменьшению коэффициента усиления. Максимам главного лепестка диаграммы отклоняется от геометрической оси антенны. Кроме того, чтобы антенна была согласована с фидером, ее входное сопротивление должно быть чисто активным и равняться волновому сопротивлению фидера. У расстроенной антенны входное сопротивление имеет комплексный характер и содержит реактивную составляющую, а активная составляющая значительно отличается от номинального значения.

    Профессиональная аппаратура обычно содержит специальные блоки для контроля за согласованием антенны с фидером. Телевизионный приемник таких блоков не содержит. В результате рассогласования дополнительно теряется часть энергии сигнала, что приводит к уменьшению напряжения сигнала на выходе антенны и равносильно уменьшению ее коэффициента усиления. Чем больше элементов содержит антенна типа “Волновой канал”, тем острее встает вопрос о необходимости ее настройки. Практика показывает, что удовлетворительно могут работать без настройки лишь трехэлементные антенны типа “Волновой канал”. Однако коэффициент усиления трехэлементной антенны по напряжению не превышает 2,2 (около 6,8 дБ), что слишком мало для дальнего приема. Пятиэлементная антенна имеет коэффициент усиления 2,8 (около 9 дБ), но из-за неизбежной расстройки на практике она дает такой же результат, что и трехэлементная антенна. Теоретически коэффициент усиления по напряжению 11-элементной антенны типа “Волновой канал” составляет 4 (около 12 дБ). Но такое усиление соответствует лишь настроенной и согласованной с фидером антенне. Из-за большого количества элементов расстройка такой антенны после ее сборки оказывается значительной, что приводит также к значительному ухудшению ее эффективности как благодаря падению фактического коэффициента усиления, так и за счет сильного рассогласования антенны с фидером. Этими причинами объясняются частые неудачи радиолюбителей, пытавшихся за счет использования многоэлементных антенн добиться улучшения телевизионного приема в условиях слабого сигнала. Вызывает сожаление, что, несмотря на многократные публикации изложенного, многие авторы статей и книг продолжают рекомендовать радиолюбителям использование многоэлементных антенн в условиях дальнего приема телевидения, по-видимому, основываясь исключительно на теоретических предпосылках.

    В связи с тем что в настоящее время значительная часть территории страны охвачена двух- и даже трехпрограммным телевизионным вещанием, при выборе приемной антенны весьма заманчивым представляется возможность использования широкодиапазонной антенны, что позволило бы одной антенной обеспечить прием двух или трех телевизионных программ по разным каналам. Такие антенны существуют, например зигзагообразные и логопериодические антенны. Однако их использование возможно лишь в зоне прямой видимости, так как коэффициент усиления сравнительно мал. Если же передатчики расположены в разных направлениях, широкодиапазонную антенну приходится устанавливать на поворотной мачте и каждый раз при переходе с приема одной программы на другую переориентировать. При этом за счет неточной ориентировки антенны сигнал дополнительно ослабляется. В зоне полутеня при необходимости принимать несколько программ по разным каналам необходимо устанавливать раздельные узкополосные антенны. Две раздельные антенны можно подключить к общему фидеру с помощью разделительного фильтра. Если же количество антенн больше двух, дополнительная коммутация может осуществляться контактами электромагнитного реле, установленного вблизи антенн, управление которым производится дистанционно, тумблером, установленным у телевизора. При этом питание обмотки реле может поступать от телевизора по тому же фидеру без использования дополнительных проводов.

    В радиолюбительских условиях для дальнего приема телевизионных передач хорошо зарекомендовали себя синфазные системы, состоящие из нескольких сравнительно простых антенн. Две антенны, расположенные одна над другой, образуют двухэтажную систему, которая характеризуется суженной диаграммой направленности в вертикальной плоскости. Четыре антенны могут образовать двухэтажную двухрядную систему с суженной диаграммой в вертикальной и горизонтальной плоскостях. Сужение диаграммы направленности соответствует увеличению коэффициента усиления. Каждое удвоение количества антенн в синфазной системе соответствует увеличению коэффициента усиления на 3 дБ (в 1,41 раза по напряжению) только за счет суммирования сигналов, принятых каждой антенной. Дополнительно, за счет сужения диаграммы направленности, коэффициент усиления увеличивается примерно еще на 1 дБ при каждом удвоении количества антенн в системе.

    Использование в составе синфазной системы сравнительно простых антенн позволяет получить большой коэффициент усиления без необходимости настройки антенн. Необходимо лишь обеспечить согласование системы с фидером, что легко выполняется, поскольку значения входного сопротивления простых антенн известны и мало зависят от настройки антенны. Таким образом, наращивая количество антенн в системе, можно неограниченно увеличивать коэффициент усиления. Это часто оказывается необходимо в диапазоне ДМВ, где при прочих равных условиях напряжение сигнала на выходе антенны значительно меньше, чем в диапазоне MB, из-за уменьшения длины волны. Вместе с тем, благодаря малым размерам антенн этого диапазона увеличение их количества в системе легко выполнимо и не приводит к чрезмерным габаритам системы.

    Наибольшее распространение среди любителей дальнего приема телевидения нашли синфазные системы, собранные из двухэлементных и трехэлементных рамочных антенн “Двойной квадрат” и “Тройной квадрат”. Двухэлементные рамочные антенны обычно используются в диапазонах MB, а трехэлементные—в диапазонах ДМВ. По данным некоторых авторов, двухэтажная двухрядная синфазная система, собранная из четырех двухэлементных рамочных антенн, обладает коэффициентом усиления по напряжению порядка 6—8 (16... 18 дБ), а такая же система из трехэлементных рамочных антенн—11—13 (21...23 дБ). Достичь такого усиления с помощью многоэлементной антенны типа “Волновой канал” невозможно, так как даже коэффициент усиления 16-элементной антенны “Волновой канал” не превышает 14 дБ, да и то, если она тщательно настроена и согласована с фидером.

    Следует предостеречь от частых попыток сборки синфазных систем из нескольких широкодиапазонных антенн. Таким путем пытаются достичь высокого коэффициента усиления при широкополосности антенны, для того чтобы в условиях дальнего приема иметь возможность одной антенной системой принимать передачи нескольких программ по разным каналам. Такие попытки, как правило, оказываются безуспешными, так как не удается согласовать антенну в диапазоне частот. Элементы согласования обычно содержат резонансные узлы в виде полуволновых и четвертьволновых отрезков кабеля, выполняющих свои функции только на определенной частоте. В широком диапазоне частот они работать уже не могут. Не дают также успеха попытки сборки синфазных систем из нескольких многоэлементных антенн "волновои канал”, из-за того, что антенны расстроены по-разному, фазы напряжений сигнала на их выходах также оказываются различными, и синфазного сложения их не получается, а порой вместо сложения происходит вычитание.

    При дальнем приеме антенна устанавливается на высокой мачте и соединяется с телевизором длинным фидером. Чем длиннее фидер, тем большее затухание он вносит и тем меньше напряжение сигнала на входе телевизора. Для фидера наиболее распространен кабель марки , обладающий погонным затуханием 0,07 дБ/м на 1—5-м каналах, 0,13 дБ/м на 6—12-м каналах, 0,25—0,37 дБ/м на 21—60-м каналах. Графики погонного затухания разных марок кабеля приведены на рис. 2.

    Если при длине фидера 50 м затухание сигнала на 1—5-м каналах невелико (3,5 дБ), то на 33-м канале оно достигает 15 дБ, что соответствует уменьшению напряжения сигнала почти в 6 раз. Для компенсации затухания сигнала в фидере используют антенный усилитель, установленный на мачте около антенны. Это позволяет обеспечить поступление на вход антенного усилителя сигнала, который еще не ослаблен за счет прохождения по длинному фидеру. При этом сохраняется высокий уровень отношения сигнал/шум на входе антенного усилителя и на антенном входе телевизионного приемника. В этом состоит принципиальное отличие от случая, когда антенный усилитель устанавливается около телевизора и никакого полезного эффекта не дает. Антенный усилитель потому и называется антенным, что должен устанавливаться около антенны, а не около телевизора. Коэффициент усиления антенного усилителя должен быть по крайней мере таким же, как величина затухания сигнала в фидере, лучше — на 5... 10 дБ больше. Тогда уровнем собственных шумов телевизионного приемника можно будет пренебречь, и качество изображения будет определяться исключительно отношением сигнал/шум на входе антенного усилителя,

    Необходимость в использовании длинного фидера иногда возникает в условиях закрытой местности, когда телевизор расположен в ложбине. Если антенну установить на вершине ближнего холма, уверенный прием будет обеспечен, но длина соединительного фидера окажется порядка 100...200 м. Даже на частоте 1-го канала при длине фидера 200 м затухание сигнала в нем составит 14 дБ. И в этом случае установка антенного усилителя.около антенны позволит скомпенсировать затухание сигнала. Если усиления одного усилителя недостаточно, можно включить два усилителя последовательно один за другим, разместив их равномерно по длине фидера.

    Нужно также обратить внимание на возможность использования в качестве фидера коаксиальных кабелей различных марок. Кабель обладает меньшим погонным затуханием, чем кабель . Особенно это заметно в диапазонах ДМВ: на частоте 60-го канала кабель вносит затухание примерно в три раза меньше по напряжению, чем кабель . Таким образом, за счет использования лучшего кабеля при его большой длине можно поднять уровень сигнала на входе телевизора в несколько раз.

    Так как при покупке кабеля обычно нет возможности определить его марку, можно руководствоваться тем, что чем больше диаметр кабеля, тем меньшее затухание он вносит. В качестве фидера всегда используется кабель с волновым сопротивлением 75 Ом. Если марка кабеля и его волновое сопротивление неизвестны, его легко определить при наличии штангенциркуля, если кабель имеет сплошную полиэтиленовую изоляцию. Отношение наружного диаметра внутренней полиэтиленовой изоляции к диаметру центральной жилы у кабелей с волновым сопротивлением 75 Ом должно находиться в пределах от 6,5 до 6,9.

    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама