THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В этом разделе я расскажу о внешних носителях информации. Напомню, что в иерархии памяти они стоят последними. На них можно записать больше всего данных. Подобные накопители не так удобны (например, зачастую пользователю лень поменять компакт-диск), зато стоят совсем дешево.

Внешние носители – это не только диски или дискеты. К ним также относятся внешние жесткие диски, оптические приводы, USB-flash-карты и т. д.

Внешний жесткий диск

Внешние жесткие диски существуют достаточно давно. По строению они почти не отличаются от внутренних. Можно сказать, что это самые обычные винчестеры, но поставляемые не вместе с компьютером (в частности, с ноутбуком), а в специальном пластиковом корпусе.

Кроме жесткого диска, там размещена специальная микросхема, преобразующая сигналы для передачи по одному из разъемов, выведенных на ноутбуке или настольном ПК). Вы подключаете небольшую коробочку с помощью кабеля к компьютеру, и через несколько секунд операционная система определяет новый жесткий диск (рис. 4.11). Ее даже не придется перезагружать.


Рис. 4.11. Внешний жесткий диск формата 2,5”

Сегодня используется два способа подключения жесткого диска: через USB и FireWire. О первом типе говорилось уже не раз. Его назначение универсально, поэтому с ним совместимы не только мышь, клавиатура, принтер, сканер, но и некоторые внешние носители.

Какое-то время назад FireWire (он также известен как IEEE 1394 и i.Link) был доступен только для владельцев профессиональных и дорогих компьютеров, но сейчас он есть почти в каждом ноутбуке. Формально FireWire предпочтителен для подключения внешнего жесткого диска. Из-за лучшей защищенности он сможет обеспечить большую надежность и скорость передачи данных. Однако внешних жестких дисков, поддерживающих формат IEEE 1394, на рынке совсем немного. Чаще всего они совместимы и с USB 2.0.

Существует способ превратить обычный внутренний жесткий диск во внешний. В компьютерных магазинах есть неплохой выбор внешних кейсов для жестких дисков. Вам необходимо приобрести кейс и жесткий диск к нему. После чего по инструкции вставить винчестер внутрь – и все готово.

Важно соблюсти несколько правил. В предыдущей главе я говорил, что бывает несколько размеров винчестеров, самые распространенные – 3,5 и 2,5”. Первые используются в настольных компьютерах, вторые – в мобильных. Помните, что кейс может быть совместим только с одним из них.

Следует обратить внимание на интерфейс подключения. Это может быть Serial ATA (или SATA) и IDE (или UDMA, Ultra ATA). Необходимо, чтобы и жесткий диск, и кейс поддерживали один и тот же способ подключения. В противном случае ничего не будет работать.

Внешний оптический привод

Сегодня производители ноутбуков стараются оснастить каждую модель оптическим приводом для работы с компакт-дисками. В случае миниатюрных субноутбуков это сделать нельзя по вполне понятным причинам. Однако если вам необходимо работать с дисками, то выходом из ситуации станет приобретение внешнего оптического привода.

Как в случае с винчестерами, внешние приводы чаще всего являются внутренними версиями, заключенными в кейс. Они бывают разных размеров. Самые большие и тяжелые – аналоги приводов, устанавливаемых в настольные компьютеры. Наверное, их приобретать не следует. Во-первых, эти приводы довольно громоздкие, во-вторых, для работы может понадобиться дополнительная розетка, что говорит не в пользу мобильности.

При желании можно найти и «ноутбучный» внешний привод. Он будет намного компактнее и, конечно, дороже. Если вам нужна специальная версия для транспортировки, то именно такой вариант станет одним из лучших. «Одним из» потому, что есть модели, разработанные специально для переноса вместе с ноутбуком (рис. 4.12).


Рис. 4.12. Специальный привод, предназначенный для переноса с ноутбуком

Подобные оптические приводы базируются не на внутренних аналогах, что отрицательным образом сказывается на их стоимости. Зато удобство транспортировки на высоте.


Введение.
Когда вы работаете на компьютере, часто возникает потребность переместить данные с одного компьютера на другой, находящийся в отдалённом месте. Для этого требуется внешний носитель информации, на который можно записать данные, а затем передать записанные данные на другую компьютерную систему
Возможность осуществлять резервное копирование данных актуально для всех, чья работа связана с компьютером. Резервное копирование данных важно не только в связи с проблемой сохранности документов, потеря даже рабочих файлов может стать весьма неприятным событием.
Для резервного копирования данных необходимо иметь дело с надежным, объемным устройством. И, помимо этого, используемый носитель информации должен быть удобен, а резервное копирование данных не должно превращаться в отдельный сложный процесс.
В настоящее время для внешнего хранения данных используют несколько типов устройств, использующих магнитные или магнитооптические носители.

Необходимость во внешних устройствах хранения данных возникает в двух случаях:
    когда на вычислительной системе обрабатывается больше данных, чем можно разместить на базовом жестком диске;
    когда данные имеют повышенную ценность и необходимо выполнять регулярное резервное копирование на внешнее устройство (копирование данных на жестком диске не является резервным и только создает иллюзию безопасности).
В настоящее время для внешнего хранения данных используют несколько типов устройств, использующих магнитные или магнитооптические носители.
Основная часть.
1. Стримеры
Стримеры – это накопители на магнитной ленте. Их отличает сравнительно низкая цена. К недостаткам стримеров относят малую производительность (она связана прежде всего с тем, что магнитная лента – это устройство последовательного доступа) и недостаточную надежность (кроме электромагнитных наводок, ленты стримеров испытывают повышенные механические нагрузки и могут физически выходить из строяУстройство стримера: лентопротяжный механизм, считывающая головка, корпус. Емкость магнитных кассет (картриджей) для стримеров составляет до нескольких сот Мбайт. Дальнейшее повышение емкости за счет повышения плотности записи снижает надежность хранения, а повышение емкости за счет увеличения длины ленты сдерживается низким временем доступа к данным.
2. ZIP-накопители.
ZIP-накопители выпускаются компанией Iomega, специализирующейся на создании внешних устройств для хранения данных. Устройство работает с дисковыми носителями, по размеру незначительно превышающими стандартные гибкие диски и имеющими емкость 100/250 Мбайт. ZIP-накопители выпускаются во внутреннем и внешнем исполнении. В первом случае их подключают к контроллеру жестких дисков материнской платы, а во втором – к стандартному параллельному порту, что негативно сказывается на скорости обмена данными.
Преимущества накопителей Zip:
- низкая удельная стоимость хранения информации (стоимость/объем);
- высокая производительность (почти в 100 раз выше по сравнению с гибким диском);
- удобство в использовании (небольшой размер ZIP позволяет носить его в кармане);
- легкость инсталляции (для работы необходима одна маленькая программа и драйвер);
- широкий выбор вариантов исполнения и интерфейсов.
3. устройства HiFD
Основным недостатком ZIP-накопителей является отсутствие их совместимости со стандартными гибкими дисками 3,5 дюйма. Такой совместимостью обладают устройства HiFD компании Sony. Они позволяют использовать как специальные носители емкостью 200 Мбайт, так и обычные гибкие диски. В настоящее время распространение этих устройств сдерживается повышенной ценой.
На носителе предварительно записан сервосигнал, позволяющий позиционировать головку чтения/записи. Накопитель совместим со стандартными 3,5-дюймовыми дискетами на 1,44 Мбайт, причем для чтения/записи 1,44 и 200 Мбайт дисков используется разный зазор между поверхностью диска и головкой. Существуют устройства с интерфейсом ATAPI и LPT.
Габариты дисковода Sony HiFD 143х42х214 мм, вес около килограмма. Корпус дисковода снабжен ножками для горизонтального или вертикального расположения на столе. Дискета HiFD внешне похожа на стандартный флоппи-диск. Ее отличает Т-образная металлическая шторка и бегунок блокировки записи, который расположен не справа, а слева. Лишние прорези в пластмассовом корпусе дискеты HiFD не позволяют по ошибке установить ее в обычный флоппи-дисковод.

3. Накопители JAZ . Этот тип накопителей, как и ZIP-накопители, выпускается компанией Iomega. По своим характеристикам JAZ-носитель приближается к жестким дискам, но в отличие от них является сменным. В зависимости от модели накопителя на одном диске можно разместить 1 или 2 Гбайт данных.
Позволяет хранить на одном диске до 1 Гб данных, чего вполне достаточно для записи целого фильма в формате MPEG. Но, поскольку в накопителе применяется нестандартный формат носителя, для обмена файлами у обоих партнеров должны стоять накопители Jaz.
Интересна статистика использования дисководов Бернулли. Оказалось, что 28% пользователей используют диски Бернулли для резервного копирования, 22% - в качестве замены жесткого диска, 21% - для транспортировки данных, 13% - для обеспечения их секретности и 8% - для архивации.
Современные накопители типа Бернулли имеют емкость 90,100,150,230 Мб и 1 Гб на кассету и совместимы снизу вверх (исключение - Jaz). Учтите, что если обычный винчестер может “опасть “ через 2-4 года после покупки, “похоронив” вместе с собой все программы, то такие “поминки” с Бернулли практически невозможны.
5. Накопители на магнитных дисках.
Магнитные диски используются как запоминающие устройства,позволяющие хранить информацию долговременно, при отключенном питании. Для работы с Магнитными Дисками используется устройство, называемое накопителем на магнитных дисках (НМД
Основные виды накопителей:
· накопители на гибких магнитных дисках (НГМД);
· накопители на жестких магнитных дисках (НЖМД);
· накопители на магнитной ленте (НМЛ);
· накопители CD-ROM, CD-RW, DVD.
Им соответствуют основные виды носителей:
· гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;
· жёсткие магнитные диски (Hard Disk);
· кассеты для стримеров и других НМЛ;
· диски CD-ROM, CD-R, CD-RW, DVD.
Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/ записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.
Основные характеристики накопителей и носителей:
· информационная ёмкость;
· скорость обмена информацией;
· надёжность хранения информации;
· стоимость.
6. Флэш-карты
Новейшая технология хранения - флэш-память - в течение нескольких лет была основным или вспомогательным носителем данных для портативных компьютеров. Однако бурный рост рынка цифровых камер и MP3-плейеров, использующих эту память, привел к повсеме стному распространению этих устройств.
Как работает флэш-память?
Флэш-память относится к устройствам длительного хранения. Данные в ней хранятся в виде блоков, а не байтов, как в обычных модулях памяти. Флэш-память также используется в наиболее современных компьютерах для микросхем BIOS, перезаписываемых с помощью процесса туннелирования Фоулера–Нордхейма. Флэш-память должна быть очищена перед записью новых данных.
Высокая производительность, низкие требования при перепрограммировании и неболь шой размер новейших устройств флэш-памяти делает этот тип памяти прекрасным дополне нием при использовании в портативных компьютерах и цифровых камерах. В этой области флэш-память часто называют “цифровой пленкой”. В отличие от настоящей пленки, цифро вая может быть стерта и использована заново. Типы устройств флэш-памяти На сегодняшний день популярны несколько типов флэш-памяти и важно знать, какой из них используется в вашей цифровой камере.

Кроме вышеперечисленных основных устройств накопления и хранения информации существуют некоторые другие, по разным причинам менее популярные. К таким устройствам относятся:
– магнитооптические диски;
– бернулли-диски;
– устройства резервирования данных;
– некоторые другие устройства.
Все эти устройства имеют разные емкости, скорости доступа к информации, свои минусы и плюсы, а также разную цену. У них есть свои ограничения, но есть и несомненные достоинства. Одно у них всех есть общее – эти устройства были созданы для хранения, накопления и резервирования данных.
7. Съемные USB – диски.
USB-диск – устройство небольшого размера, которое используется для передачи данных с компьютера на компьютер с помощью порта USB.
USB - HDD съемный внешний диск – съемный внешний жесткий диск который может выполнять все функции обычного жесткого диска (HDD) и, к тому же, обладает рядом преимуществ, например, - функция "съемности" - незаменима при переносе больших объемов информации, миниатюрность – не больше "стандартного" портсигара. Кроме того, USB - HDD съемный внешний диск , очень стильный аксессуар, и, как правило, имеет удобный чехол для переноски.
USB - HDD съемный внешний диск облачен в стальной корпус, надежно предохраняющий его от механических повреждений. Некоторые модели USB - HDD съемных внешних дисков оснащены LCD-дисплеями, которые дают дополнительные удобства при их использовании.
8. Iomega Clik
Дискеты Iomega Clik! (компактные майларовые носители диаметром около 5 см в жестком стальном кожухе), на мой взгляд, сейчас остаются единственной реальной альтернативой дорогим флэш-картам. Носитель с «округленной» емкостью 40 Мбайт должен стоить около 9 долл., что в хорошем смысле несопоставимо со стоимостью флэш-карты близкого размера (разница почти десятикратная). Выпущенный больше года назад автономный накопитель Clik! (менее 200 долл.) был спроектирован как верный спутник цифрового фотоаппарата. В состав накопителя, работающего от аккумуляторов, входил карт-ридер со слотами для CompactFlash и SmartMedia, а перенос данных с карты на дискету производился нажатием одной кнопки..
По сравнению с ним выпущенный значительно позже дисковод Clik ! в типоразмере PC Card Type II (около 200 долл.) выглядит настоящим произведением искусства. Никаких проблем с установкой, никаких драйверов, производительность 600 Кбайт/с, возможность быстрого подключения к настольному ПК через фирменную USB-стыковочную станцию (50 долл.) - что еще нужно пользователю ноутбука? Кстати, скорость вращения диска в приводе Clik! составляет 2941 об./мин., что немногим меньше, чем у Zip, и приблизительно вдвое-втрое уступает скорости современных винчестеров.

9. Castlewood ORB - накопитель на съемных носителях 2,2 Гбайт винчестерного типа

Castlewood ORB - это редкий пример долголетия среди немассовых накопителей. Он стал сенсацией Comdex’97 и был удостоен престижной награды. С тех пор близкие родственники ORB (например, накопители SyQuest) уже покинули этот рынок, а дисководы стандарта ORB производятся сейчас уже несколькими компаниями и в принципе нормально продаются. Кстати, интрига состоит в том, что компанию Castlewood открыл бывший основатель SyQuest.
Так что же представляет собой ORB? Это накопитель на сменных дисках винчестерного типа. Трехдюймовый диск (картридж) ORB имеет емкость 2,2 Гбайт (2,16 Гбайт в FAT16) при стоимости около 30 долл. за носитель. Сам привод ORB с интерфейсом USB может стоить 250-280 долл., а в ближайшее время будут доступны модели для подключения к шине FireWire. Впрочем, оптимальной по цене до сих пор можно считать внутреннюю модель ORB с интерфейсом IDE (ATAPI).
В приводе ORB развивается скорость вращения диска - 5400 об./мин, что соответствует производительности настоящих современных винчестеров в среднем ценовом диапазоне. Кроме того, считывание/запись производится подсистемой магнито-резистивных головок. При этом заявленное время поиска для дисководов ORB составляет 10 и 12 мс на чтение и запись соответственно, что опять же сопоставимо со скоростными характеристиками современных винчестеров. По спецификации потенциальная скорость передачи данных дисковода ORB составляет 12,2 Мбайт/с (уж на 8 Мбайт точно можно рассчитывать), но нередко она ограничена производительностью интерфейса. Так, например, при подключении к принтерному порту реальная производительность привода становится в шесть раз меньше максимальной.
и т.д.................

Диски, на которых хранится информация в компьютере, имеют свои имена – каждый диск назван буквой латинского алфавита, а затем ставится двоеточие. Так, для дискет всегда отводятся буквы A: и B:. Логические диски винчестера именуются, начиная с буквы C:. После всех имен логических дисков следуют имена дисководов для компакт-дисков. Например, установлены: дисковод для дискет, винчестер, разбитый на 3 логических диска и дисковод для компакт-дисков. Определить буквы всех носителей информации. A: – дисковод для дискет;

C:, D:, E: – логические диски винчестера;

F: – дисковод для компакт-дисков.

Полное имя файла

Уникальность имени файла обеспечивается тем, что полным именем файла считается собственное имя файла вместе с путем доступа к нему. Понятно, что в этом случае на одном носителе не может быть двух файлов с тождественными полными именами.

Пример записи полного имени файла:

<имя носителя>\<имя каталога-1>\…\<имя каталога-М>\<собственное имя файла>

Вот пример записи двух файлов, имеющих одинаковое собственное имя и размещенных на одном носителе, но отличающихся путем доступа, то есть полным именем. Для наглядности имена каталогов (папок) напечатаны прописными буквами.

D: \Документы\Сведения о студентах\2004-05 учебный год\Результаты аттестации. doc

D: \Деканат\Аттестация студентов\Результаты аттестации. doc

2.4. Файловые системы

Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы – табличный. Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, цилиндра и сектора. Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения. Физическая структура хранения данных представлена на рисунке 2.2.

Рисунок 2.2. Физическая структура хранения информации

Данные о том, в каком месте диска записан тот или иной файл, хранятся в системной области диска в специальных таблицах размещения файлов (FAT-таблицах). Поскольку нарушение FAT-таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности и она существует в двух экземплярах, идентичность которых регулярно контролируется средствами операционной системы.

Наименьшей физической единицей хранения информации является сектор. Размер сектора равен 512 байт. Поскольку размер FAТ-таблицы ограничен, то для дисков, размер которых превышает 32 Мбайта, обеспечить адресацию к каждому отдельному сектору не представляется возможным. В связи с этим группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к информации. Размер кластера, в отличие от размера сектора, не фиксирован и зависит от емкости диска.

Как было сказано ранее, информация на дисках записывается в секторах фиксированной длины, и каждый сектор и расположение каждой физической записи (сектора) на диске однозначно определяется тремя числами: номерами поверхности диска, цилиндра и сектора на дорожке. И контроллер диска работает с диском именно в этих терминах. А пользователь желает использовать не сектора, цилиндры и поверхности, а файлы и каталоги. Поэтому как-то требуется при операциях с файлами и каталогами на дисках перевести это в понятные контроллеру действия: чтение и запись определенных секторов диска. А для этого необходимо установить правила, по которым выполняется этот перевод, то есть, прежде всего, определить, как должна храниться и организовываться информация на дисках. Набор этих правил и называется файловой системой.

Файловая система – это набор соглашений, определяющих организацию данных на носителях информации. Наличие этих соглашений позволяет операционной системе, другим программам и пользователям работать с файлами и каталогами, а не просто с участками (секторами) дисков. Файловая система определяет:

Как хранятся файлы и каталоги на диске;

Какие хранятся сведения о файлах и каталогах;

Как можно узнать, какие участки диска свободны, а какие – нет;

Формат каталогов и другой служебной информации на диске.

Для использования дисков, записанных (размеченных) с помощью некоторой файловой системы, операционная система или специальная программа должна поддерживать эту файловую систему.

Файловая система, наиболее распространенная на IBM PC-совместимых компьютерах, была введена еще в начале 80-х годов в операционных системах MS DOS 1.0 и 2.0. Эта файловая система достаточно примитивна, так как она была создана для хранения данных на дискетах. Обычно эта файловая система называется FAT, так как самой важной структурой данных в ней является таблица размещения файлов на диске, по-английски – file allocation table, сокращенно – FAT. Эта таблица содержит информацию о том, какие участки (кластеры) диска свободны, и о цепочках кластеров, образующих файлы и каталоги.

В файловой системе FAT имена файлов и каталогов должны состоять не более чем из 8 символов плюс три символа в расширении имени. Она приводит к значительным потерям (до 20 %) дискового пространства из-за больших размеров кластеров на дисках высокой емкости. Это связано с тем, что в конце последнего кластера файла остается свободное место, в среднем равное половине кластера. А на больших дисках размер кластеров FAT может достигать 32 Кбайт. Таким образом, на диске емкостью 2 Гбайта с 20000 файлов потери составят 320 Мбайт, то есть около 16 %. Наконец, файловая система FAT малопроизводительна, особенно для больших дисков, не приспособлена к многозадачной работе (все операции требуют обращений к таблице размещения файлов, а потому до завершения одной операции нельзя начинать другую).

При разработке Windows 95 фирма Microsoft решила не вводить новую файловую систему, а залатать имеющуюся файловую систему FAT, позволив присваивать файлам и каталогам длинные имена. Эта файловая система стала называться FAT 32. Принятый в Windows 95 подход хорош тем, что позволяет использовать старые диски с файловой системой FAT – на них просто начинают записываться длинные имена. Но все же это решение весьма искусственное, и многие программы – для починки файловой системы дисков, «сжатия» дисков, резервного копирования и т. д., – могут привести к потере длинных имен на диске. FAT 32 поддерживает меньшие размеры кластеров, что позволяет более эффективно использовать дисковое пространство.

При разработке операционной системы Windows NT была создана новая файловая система – NTFS. Она была ориентирована на диски большого объема, содержащие множество файлов, в них приняты существенные меры по обеспечению эффективности хранения данных и контроля доступа к ним. Эта файловая система поддерживает длинные имена файлов. На логических дисках емкостью 1–2 Гбайта файловая система NTFS позволяет хранить в среднем на 10–15 % больше информации, чем FAT. А доступ к файлам в ней осуществляется заметно быстрее, особенно в многозадачной среде.

Разработчики NTFS, не забывая об эффективности, старались также обеспечить надежность файловой системы и восстанавливаемость данных при сбоях. Для этого, в частности, NTFS дублирует всю критически важную информацию и обеспечивает регистрацию всех изменений на дисках в специальном файле регистрации, причем для каждого изменения запоминается и способ его отмены. В результате практически при любых сбоях NTFS автоматически восстанавливается. NTFS также (в отличие от FAT) может работать с логическими дисками и файлами размером более 2 Гбайт – максимальный размер логических дисков и файлов там – 4х1018 байт.

Если файловая система на диске не поддерживается данной операционной системой, то вся информация на этом диске окажется недоступной (при работе в этой операционной системе, естественно). Для таких логических дисков может быть либо вообще не назначена буква (то есть к диску нельзя будет обратиться), либо при любом доступе к диску будет выдаваться сообщение об ошибке.

Таблица 1. Сравнительные характеристики файловых систем

Особая файловая система разработана для компакт-дисков (CD-ROM). Это оказалось необходимым, так как само физическое устройство компакт-дисков не такое, как у жестких дисков или дискет: в них информация записывается не в кольцевых дорожках, а в единственной спиралеобразной дорожке (как у аудиокомпакт-дисков). Эта файловая система называется CDFS.





Гибкие магнитные диски (дискеты). Накопитель на гибких дисках принципиально похож на накопитель на жестких дисках. Скорость вращения гибкого диска примерно в 10 раз медленнее, а головки касаются поверхности диска. В основном структура информации на дискете, как физическая так и логическая, такая же как на жестком диске. С точки зрения логической структуры на дискете отсутствует таблица разбиения диска.


Принцип работы дискеты. В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее.


Оптический (лазерный) диск. Первые оптические лазерные диски появились в 1972 году и продемонстрировали большие возможности по хранению информации. Объемы хранимой на них информации позволяли использовать их для хранения огромных массивов данных (таких как базы данных, энциклопедии, коллекции видео и аудио данных). Легкая замена этих дисков позволяла, «носить с собой» все материалы требуемые для работы, в любом объеме. Оптические диски имели очень высокую надежность и долговечность, что позволяло использовать их для архивного хранения информации.


Принцип работы диска. Принцип работы дисковода напоминает принцип работы обычных дисководов для гибких дисков. Поверхность оптического диска (CD-ROM) перемещается относительно лазерной головки постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Луч лазера направляется на дорожку, фокусируясь при этом с помощью катушки. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия на поверхности диска. При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку он рассеивается и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические, яркое излучение преобразуется в нули слабое - в единицы. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы


Жесткий магнитный диск (винчестер). Накопитель на жёстких магнитных дисках или винчестерский накопитель это наиболее массовое запоминающее устройство большой ёмкости, в котором носителями информации являются круглые алюминиевые пластины плоттеры, обе поверхности которых покрыты слоем магнитного материала. Используется для постоянного хранения информации программ и данных.


Принцип работы винчестера. Поверхность плоттера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении плоттера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска. Винчестерские накопители имеют очень большую ёмкость: от сотен Мегабайт до десятков Гбайт. У современных моделей скорость вращения шпинделя достигает 7200 оборотов в минуту, среднее время поиска данных 10 мс, максимальная скорость передачи данных до 40 Мбайт/ с. В отличие от дискеты, винчестерский диск вращается непрерывно. Винчестерский накопитель связан с процессором через контроллер жесткого диска. Все современные накопители снабжаются встроенным кэшем (64 Кбайт и более), который существенно повышает их производительность.


Достоинства и недостатки. Носители.Достоинства.Недостатки. Дискета Компактная, низкая цена. Маленькая скорость обмена информацией, небольшой объем памяти, Диск Долговечный, удобный в применении. Информация недостаточно защищена, хрупкий. Винчестер Объем памяти существенно выше, чем гибких; скорость обмена информацией намного больше. Немобильный.




THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама