THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.


По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.


Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.


Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.

Специалисты отмечают высокий уровень бесшумности и вместе с этим, эффективность. Как утверждает его создатель, такой самовращающийся двигатель магнитного типа как этот имеет коэффициент полезного действия, выше 300%.

Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.

Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.

Магнитный мотор Говарда Джонсона

Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.

Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.

Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.

Генератор Перендева

Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.


Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.


Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.


Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Содержание:

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует особо отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации. Поэтому прежде чем пытаться изготовить такой двигатель для бытовых нужд, следует тщательно ознакомиться с его конструкцией и принципом работы.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен . В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.


В интернете можно почерпнуть много полезной информации, и мне хотелось бы обсудить с сообществом возможность создания аппаратов (двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

В обсуждениях данных двигателей говорят что теоретически они возможно могут работать НО согласно закона сохранения энергии это невозможно.

Тем не менее что же собой представляет постоянный магнит:

Есть в сети информация о таких аппаратах:

По замыслу их изобретателей они созданы для получения полезной энергии но очень многие считают что в их конструкциях скрываются некие недоработки препятствующие свободной работе аппаратов для получения полезной энергии,(а работоспособность аппаратов всего лишь ловко скрытое мошенничество) . Попробуем обойти эти препятствия и проверить существование возможности создания аппаратов(двигателей) использующих силу магнитных полей постоянных магнитов для получения полезной энергии.

И вот вооружившись листом бумаги карандашом и резинкой попробуем добиться усовершенствования приведённых выше аппаратов

ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ

Настоящая полезная модель относится к магнитным аппаратам вращения, а также к области энергетического машиностроения.

Формула полезной модели:

Аппарат магнитного вращения состоящий из роторного (вращающегося) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и статорного (статического) диска с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами, сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, и расположенных на одной оси вращения, где роторный диск неподвижно соединён с валом вращения, а статорный диск соединён с валом посредством подшипника; какой отличается тем что в его конструкции применены постоянные магниты, сконструированные таким образом, что противоположные полюса расположены под углом 90 град. друг к другу, а так же в конструкции применены статорный (статический) и роторный (вращающийся) диски с неподвижно прикреплёнными к нему магнитными обоймами (секциями) с постоянными магнитами.

Предшествующий уровень техники:

А) Хорошо известен магнитный двигатель Кохеи Минато. Патент США № 5594289

В патенте описано магнитный аппарат вращения в котором на валу вращения расположены два ротора с размещёнными на них постоянными магнитами обычной формы (прямоугольный параллелепипед), где все постоянные магниты размещены наискосок радиальной линии направления ротора. А с наружной периферии роторов расположено два электромагнита на импульсном возбуждении которых и базируется вращение роторов.

Б)Так же хорошо известен магнитный двигатель Перендев

В патенте на него описан аппарат магнитного вращения в котором на валу вращения расположен ротор из немагнитного материала в котором расположены магниты, вокруг которого расположен статор из немагнитного материала в котором расположены магниты.

Изобретение обеспечивает магнитный двигатель, который включает: вал (26) с возможностью вращения вокруг своей продольной оси, первый набор (16) магнетиков (14) расположены на валу (26) в роторе (10) для вращения вала (26), и второй набор (42) магниты (40), расположенных в статоре (32), расположенных вокруг ротора (10), причем второй набор (42) магнетиков (40), во взаимодействии с первого набора (16) магнетиков (14), в котором магнетизм (14,40) первого и второго множеств (16,42) магнетизма, по крайней мере частично магнитно экранированы, чтобы сосредоточить свое магнитное поле в направлении разрыва между ротор (10) и статора (32)

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройстве вместо статора, используемого в обычных электродвигателях, или как в патенте,где используется два электромагнита на импульсном возбуждении, задействована система кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, и для сокращения,в данном ниже описании, названая статорным (статическим) диском.

В) Имеется ещё и такая схема аппарата магнитного вращения:

В схеме используется двухстаторная система и при этом в роторе по получению энергии вращения задействованы оба полюса постоянных магнитов. Но в данном ниже устройстве эффективность по получению энергии вращения будет гораздо выше.

1) Так же в описанном в патенте магнитном аппарате вращения используется область для получения энергии вращения получена из постоянных магнитов, но при этом в работе для получения энергии вращения использовано только один из полюсов постоянных магнитов.

Тогда как в данном ниже устройстве в работе по получению энергии вращения задействованы оба полюса постоянных магнитов потому что была изменена их конфигурация.

2) Так же в данном ниже устройстве увеличивается эффективность за счет внесения в схему конструкции такого элемента как диск вращения (роторный диск) на котором неподвижно закреплены кольцеобразные обоймы (секции) из постоянных магнитов изменённой конфигурации. Причём количество, кольцеобразных обойм (секций) из постоянных магнитов изменённой конфигурации, зависит от мощности которую мы хотели бы задать устройству.

3) Так же в данном ниже устройства, вместо статора, используемого в обычных электродвигателях, или как в патенте, где используется два статора, внешний и внутренний; задействована система кольцеобразных обойм (секций) из постоянных магнитов измененной конфигурации, и для сокращения, в данном ниже описании, названа статорных (статическим) диском

В данном ниже устройстве ставится цель улучшить технические характеристики, а так же увеличить мощность аппаратов магнитного вращения использующих силу отталкивания одноимённых полюсов постоянных магнитов.

Реферат:

Настоящая заявка на полезную модель предлагает аппарат магнитного вращения.(схема 1, 2, 3, 4, 5.)

Устройство магнитного вращения содержит: вращающийся вал-1 к которому неподвижно закреплён диск-2 являющийся роторным (вращающимся) диском, на котором неподвижно закреплены а)кольцеобразная-3а и б)цилиндрическая-3б обоймы с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Так же Устройство магнитного вращения содержит и статорный диск-4 (схема: 1а, 3.) стационарно закреплённый и соединённый с вращающимся валом-1 посредством подшипника-5. к стационарному диску неподвижно прикреплены кольцеобразные (схема 2,3) магнитные обоймы (6а, 6б) с постоянными магнитами, имеющими конфигурацию и расположение как на схеме: 2.

Сами постоянные магниты (7) сконструированы таким образом что противоположные полюса расположены под углом 90 град. друг к другу (схема 1, 2.) и только на внешнем статоре (6б) и внутреннем роторе (3б) они обычной конфигурации: (8).

Обоймы с магнитами (6а, 6б, 3а.) выполнены кольцеобразной формы, а обойма (3б) цилиндрической формы, таким образом чтобы при совмещении статорного диска (4) с роторным диском (2) (схема 1, 1а.) обойма с магнитами(3а) на роторном диске (2) помещалась в середину обоймы с магнитами (6б) на статорном диске (4) ; обойма с магнитами (6а) на статорном диске (4) помещалась в середину обоймы с магнитами (3а) на роторном диске (2) ; и обойма с магнитами (3б) на роторном диске (2) помещалась в середину обоймы с магнитами (6а)на статорном диске (4).

Работа устройства:

При соединении (совмещении) статорного диска (4) с роторным диском (2) (схема 1, 1а, 4)

Магнитное поле постоянного магнита (2а) обоймы с магнитами статорного диска (2) воздействует на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска.

Начинается поступательное движение отталкивания одноимённых полюсов постоянных магнитов (3а) и (2а) которое преобразуется во вращательное движение роторного диска на котором неподвижно закреплены кольцеобразная (3) и цилиндрическая (4) обоймы с магнитами согласно направлению (на схеме 4).

Далее роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (1а) обоймы с магнитами (1) статорного диска начинает воздействовать на магнитное поле постоянного магнита (3а) обоймы с магнитами (3) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (1а) и (3а) порождает поступательное движение отталкивания одноимённых полюсов магнитов (1а) и (3а), которое преобразуется во вращательное движение роторного диска согласно направления (на схеме 4) И роторный диск поворачивается в положение при котором магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска начинает воздействовать на магнитное поле постоянного магнита (4а) из обоймы с магнитами (4) роторного диска, воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (4а) порождает поступательное движение отталкивания одноимённых полюсов постоянных магнитов (2а) и (4а), которое преобразуется во вращательное движение роторного диска согласно направлению (на схеме 5) .

Роторный диск поворачивается в положение при котором, магнитное поле постоянного магнита (2а) обоймы с магнитами (2) статорного диска, начинает воздействовать на магнитное поле постоянного магнита (3б) из обоймы постоянных магнитов (3) роторного диска; воздействие магнитных полей одноимённых полюсов постоянных магнитов (2а) и (3б) порождает поступательное движение отталкивания одноимённых полюсов магнитов (2а) и (3б) положив, при этом, начало нового цикла, магнитных взаимодействий между постоянными магнитами, в рассматриваемом, для примера работы устройства, 36-градусном секторе дисков вращающего устройства.

Таким образом по окружности дисков с магнитными обоймами, состоящими из постоянных магнитов, предлагаемого устройства, расположено 10 (десять) секторов, процесс который был описан выше происходит в каждом из которых. И за счёт описанного выше процесса происходит движение вращения обойм с магнитами (3а и 3б) , и так как обоймы (3а и 3б) неподвижно присоединены к диску (2) то синхронно с движением вращения обойм (3а и 3б) происходит движение вращения диска (2) . Диск (2) неподвижно соединён (с помощью шпонки, либо шлицевое соединение) с валом вращения (1) . А через вал вращения (1) вращательный момент передаётся далее, предположительно на электрогенератор.

Для увеличения мощности двигателей такого типа можно использовать добавление в схеме дополнительных магнитных обойм,состоящих из постоянных магнитов, на дисках (2) и (4) (согласно схеме № 5).

А так же с той же целью (для увеличения мощности) в схему двигателя можно добавить ещё не одну пару дисков (роторного и статического). (схема № 5 и № 6)

Хочу ещё дополнить что данная схема именно магнитного двигателя будет более эффективной если в магнитных обоймах роторного и статического дисков будет разное количество постоянных магнитов, подобранное таким образом, чтобы в системе вращения было или минимальное количество, либо не было совсем «точек баланса»- определение именно для магнитных двигателей. Это точка в которой во время вращательного движения обоймы с постоянными магнитами (3)(схема 4) постоянный магнит (3а) во время своего поступательного движения наталкивается на магнитное взаимодействие одноименного полюса постоянного магнита (1а) которое и следует преодолеть с помощью грамотной расстановки постоянных магнитов в обоймах роторного диска (3а и 3б) и в обоймах статического диска (6а и 6б) таким образом чтобы при прохождении таких точек сила отталкивания постоянных магнитов и последующее их поступательное движение, компенсировали силу взаимодействия постоянных магнитов при преодолении магнитного поля противодействия в данных точках. Либо использовать метод экранизации.

Ещё в двигателях такого типа можно использовать вместо постоянных магнитов электромагниты (соленоид).

Тогда схема работы (уже электродвигателя) описанная выше будет подходить, только уже в конструкцию будет включена электрическая цепь.



Вид сверху разреза аппарата магнитного вращения.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией -(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

3б) Цилиндрическая обойма (секция) с постоянными магнитами обычной конфигурации.

6а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

6б) Кольцеобразная обойма (секция) с постоянными магнитами обычной конфигурации.

7) Постоянные магниты изменённой конфигурации-(сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

8) Постоянные магниты обычной конфигурации.


Вид сбоку в разрезе аппарата магнитного вращения

1) Вал вращения.

2) Роторный (вращающийся) диск.

3а) Кольцеобразная обойма (секция) с постоянными магнитами с изменённой конфигурацией- (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

1а) постоянный магнит обычной конфигурации из обоймы (1) статорного диска.

2) сектор в 36 градусов обоймы с постоянными магнитами (2а) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу статорного диска.

2а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (2) статорного диска.

3) сектор в 36 градусов обоймы с постоянными магнитами (3а) и (3б) сконструированными таким образом что противоположные полюса расположены под углом 90 град. друг к другу роторного диска.

3а) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

3б) постоянный магнит сконструированный таким образом что противоположные полюса расположены под углом 90 град. друг к другу из обоймы (3) роторного диска.

4) сектор в 36 градусов обоймы с постоянными магнитами (4а) обычной конфигурации статорного диска.

4а) постоянный магнит обычной конфигурации из обоймы (4) статорного диска.


Рисунок разреза вида сбоку АМВ(аппарата магнитного вращения) с двумя статорными дисками и двумя роторными дисками. (Прототип заявляемого большей мощности)

1) Вал вращения.

2), 2а) Роторные (вращающиеся) диски, на которых неподвижно закреплены обоймы: (2 рот), и (4 рот) с постоянными магнитами с изменённой конфигурацией - (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4), 4а) Статорные (статические, неподвижные) диски, на которых неподвижно закреплены обоймы: (1стат) и (5s) с постоянными магнитами обычной конфигурации; а также обойма (3стат) с постоянными магнитами с изменённой конфигурацией - (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу).

4 рот) Кольцеобразная обойма с постоянными магнитами (4а) с изменённой конфигурацией - (сконструированными таким образом, что противоположные полюса расположены под углом 90 град. друг к другу). Роторного (вращающегося) диска.

5) Цилиндрическая обойма с постоянными магнитами (5а) обычной конфигурации (прямоугольный параллелепипед). статорного (статического) диска.

К сожалению рисунок № 1 содержит ошибки.

Как Мы видим в схемы существующих магнитных двигателей можно вносить существенные изменения всё более их совершенствуя....

На примере двигателя Минато и аналогичных конструкций рассмотрена возможность использования энергии магнитного поля и трудности, связанные с ее практическим применением.

В своей повседневной жизни полевую форму существования материи мы редко замечаем. Разве что, когда падаем. Тогда гравитационное поле становится для нас болезненной реальностью. Но есть одно исключение - поле постоянных магнитов . Практически каждый в детстве играл с ними, с пыхтением пытаясь разорвать два магнита. Или, с таким же азартом, сдвинуть упрямо сопротивляющиеся одноименные полюса.

С возрастом интерес к этому занятию пропадал, или, наоборот, становился предметом серьезных исследований. Идея практического использования магнитного поля появилась задолго до теорий современной физики. И главным в этой идее было стремление использовать «вечную» намагниченность материалов для получения полезной работы или «дармовой» электрической энергии.

Изобретательные попытки практического использования постоянного магнитного поля в двигателях или не прекращаются и в наши дни. Появление современных редкоземельных магнитов с высокой коэрцитивной силой подогрел интерес к подобным разработкам.

Обилие остроумных конструкций разной степени работоспособности заполонили информационное пространство сети. Среди них выделяется движитель японского изобретателя Кохеи Минато .

Сам Минато по специальности музыкант, но много лет занимается разработкой магнитного двигателя собственной конструкции, изобретенного, по его словам, во время концерта фортепьянной музыки. Трудно сказать, каким музыкантом был Минато, но бизнесменом он оказался хорошим: свой двигатель запатентовал в 46 странах и продолжает этот процесс сегодня.

Необходимо отметить, что современные изобретатели ведут себя довольно непоследовательно. Мечтая осчастливить человечество своими изобретениями и остаться в истории, они с не меньшим старанием стараются скрыть детали своих разработок, надеясь в будущем получить дивиденды с продажи своих идей. Но стоит вспомнить , когда тот, для продвижения своих трехфазных двигателей, отказался от патентных отчислений фирмы, осваивавшей их выпуск.

Вернемся к магнитному двигателю Минато . Среди множества других, аналогичных конструкций, его изделие выделяется очень высокой экономичностью. Не вдаваясь в детали конструкции магнитного двигателя, которые все равно скрыты в патентных описаниях, необходимо отметить несколько его особенностей.

В его магнитном двигателе наборы постоянных магнитов расположены на роторе под определенными углами к оси вращения. Прохождение «мертвой» точки магнитами, которая, по терминологии Минато, называется точкой «коллапса», обеспечивается за счет подачи короткого мощного импульса на электромагнитную катушку статора.

Именно эта особенность и обеспечили конструкции Минато высокую экономичность и бесшумность работы при высоких оборотах вращения. Но утверждение, что КПД двигателя превышает единицу, не имеет под собой никакого основания.

Для анализа магнитного двигателя Минато и похожих конструкций, рассмотрим понятие «скрытой» энергии. Скрытая энергия присуща всем видам топлива: для угля она составляет 33 Дж/грамм; для нефти - 44 Дж/грамм. А вот энергия ядерного топлива оценивается в 43 миллиарда этих единиц. По разным, противоречивым оценкам, скрытая энергия поля постоянного магнита составляет около 30% потенциала ядерного топлива , т.е. это один из самых энергоемких источников энергии.

А вот воспользоваться этой энергией далеко не просто. Если нефть и газ при воспламенении отдает сразу весь свой энергетический потенциал, то с магнитным полем все не так просто. Запасенная в постоянном магните энергия может совершать полезную работу, но конструкция движителей при этом очень сложна. Аналогом магнита может служить аккумулятор очень большой емкости с не менее большим внутренним сопротивлением.

Поэтому сразу возникают несколько проблем: получить большую мощность на валу двигателя при малых его габаритах и массе затруднительно. Магнитный двигатель со временем, по мере расходования запасенной энергии, будет терять свою мощность. Даже предположение о том, что энергия восполняется , не может устранить этот недостаток.

Главным же недостатком является требование прецизионной сборки конструкции двигателей, которое препятствует его массовому освоению. Минато до настоящего времени работает над определением оптимального расположения постоянных магнитов.

Поэтому его обиды на японские корпорации, которые не хотят осваивать изобретение, необоснованны. Любой инженер, при выборе двигателя, в первую очередь поинтересуется его нагрузочными характеристиками, деградацией мощности в течении срока эксплуатации и еще рядом характеристик. Подобной информации по двигателям Минато, как, впрочем, и остальным конструкциям, до настоящего времени нет.

Редкие примеры практического воплощения магнитных двигателей вызывают больше вопросов, чем восхищение. Недавно фирма SEG из Швейцарии объявила о готовности выпускать под заказ компактные генераторы, приводом в которых служит разновидность магнитного двигателя Серла .

Генератор вырабатывает мощность около 15 кВт, имеет размеры 46х61х12см и ресурс работы до 60 МВт-часов. Это соответствует среднему сроку эксплуатации 4000 часов. Но каковы будут характеристики в конце этого периода?

Фирма честно предупреждает, что после этого необходимо повторное намагничивание постоянных магнитов. Что стоит за этой процедурой - неясно, но скорей всего, это полная разборка и замена магнитов в магнитном двигателе. А цена такого генератора составляет более 8500 евро.

Фирма Минато тоже объявила о заключении контракта на изготовление 40000 вентиляторов с магнитными двигателями. Но все эти примеры практического применения единичны. Причем, никто не утверждает при этом, что их устройства имеют КПД больше единицы, и они будут работать «вечно».

Если традиционный асинхронный двигатель выполнить из современных дорогих материалов, например, обмотки из серебра, а магнитопровод из тонкой стальной аморфной ленты (стеклометалл), то при сравнимой с магнитным двигателем цене получим близкий КПД. При этом, асинхронные двигатели будут иметь значительно больший срок службы при простоте изготовления.

Подводя итоги, можно утверждать, что пока удачных конструкций магнитных двигателей, пригодных для массового промышленного освоения, не создано. Те образцы, которые работоспособны, требуют инженерной доводки, дорогих материалов, прецизионной, индивидуальной настройки и не могут конкурировать с уже . И уж совсем безосновательны утверждения, что эти двигатели могут работать неограниченное время без подвода энергии.

С давних пор многие ученые и изобретатели мечтали построить так называемый . Работа над этим вопросом не прекращается и в настоящее время. Основным толчком к исследованиям в данной области послужил надвигающийся топливный и энергетический кризис, который вполне может стать реальностью. Поэтому, уже в течение длительного времени разрабатывается такой вариант, как магнитный двигатель, схема которого основана на индивидуальных свойствах постоянных магнитов. Здесь главной движущей силой выступает энергия магнитного поля. Все ученые, инженеры и конструкторы, занимающиеся этой проблемой, видят основную цель в получении электрической, механической и прочих видов энергии за счет использования магнитных свойств.

Следует отметить, что все подобные изыскания проводятся, в основном, теоретически. На практике такой двигатель еще не создан, хотя определенные результаты уже имеются. Уже разработаны общие направления, позволяющие понять принцип работы этого устройства.

Из чего состоит магнитный двигатель

Конструкция магнитного двигателя коренным образом отличается от обыкновенного электрического мотора, где главной движущей силой является электрический ток.

Магнитный двигатель функционирует исключительно за счет постоянной энергии магнитов, приводящей в движение все части и детали механизма. Стандартная конструкция агрегата состоит из трех основных деталей. Кроме самого двигателя, здесь имеется статор, на который устанавливается электромагнит, а также, ротор, на котором размещается постоянный магнит.

Вместе с двигателем, на один и тот же вал, производится установка электромеханического генератора. Кроме того, весь агрегат оборудован статическим электромагнитом. Он выполнен в виде кольцевого магнитопровода, в котором вырезается сегмент или дуга. Электромагнит дополнительно оборудован . К ней производится подключение электронного коммутатора, с помощью которого обеспечивается реверсивный ток. Регулировка всех процессов осуществляется электронным коммутатором.

Принцип работы магнитного двигателя

В первых моделях применялись железные части, на которые должен был оказывать влияние магнит. Однако, чтобы вернуть такую деталь в исходное положение, нужно затратить столько же энергии.

Для решения этой проблемы был использован медный проводник с пропущенным по нему электрическим током, который мог притягиваться к магниту. При отключении тока, взаимодействие между проводником и магнитом прекращалось. В результате проведенных исследований была обнаружена прямая пропорциональная зависимость силы воздействия магнита от его мощности. Поэтому, при постоянном электрическом токе в проводнике и увеличивающейся силе магнита, воздействие этой силы на проводник также будет расти. С помощью повышенной силы будет вырабатываться ток, который, в свою очередь, будет проходить через проводник.

На этом принципе был разработан более совершенный магнитный двигатель, схема которого включает все основные этапы его работы. Его пуск производится электротоком, поступающим в индуктивную катушку. При этом, расположение полюсов постоянного магнита перпендикулярно к вырезанному зазору в электромагните. Возникает полярность, в результате которой начинается вращение постоянного магнита, установленного на роторе. Его полюса начинают притягиваться к электромагнитным полюсам с противоположным значением.

При совпадении разноименных полюсов, происходит выключение тока в катушке. Ротор, под действием собственного веса, вместе с проходит за счет инерции эту точку совпадения. Одновременно, в катушке изменяется направление тока, и полюса в очередном рабочем цикле принимают одноименное значение. Происходит отталкивание полюсов, заставляющее ротор дополнительно ускоряться.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама