THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В мостовых электрических кранах применяют колодочные и дискоколодочные тормоза. В колодочных тормозах тормозные колодки прижимаются к наружной поверхности тормозного шкива. В дискоколодочных тормозах тормозные колодки выполнены плоскими и прижимаются они к торцовым поверхностям диска. Тормоза мосто­вых кранов замкнутые, т.е. их колодки прижаты к тормозному шкиву или диску в нормальном состоянии, когда отключены приводной электродвигатель механизма и привод тормоза. Усилие замыкания тормоза (усилие прижатия колодок к шкиву или диску) создается постоянно действующей внешней силой предварительно сжатой за­мыкающей пружины. Эти тормоза размыкаются, освобождая меха­низмы крана, только при включении привода тормоза одновременно с включением приводного электродвигателя механизма. Крановые тормоза приводятся в действие автоматически при отключении при­водного электродвигателя механизма. Тормоза механизмов мостовых кранов не создают сил сопротивления при работе механизма, а сто­порят механизм только в конце движения при отключении от элек­трической сети приводного электродвигателя и удерживают меха­низм на месте при стоянке.

Действие крановых тормозов основано на использовании сил тре­ния, возникающих при прижатии неподвижных колодок к вращаю­щемуся тормозному шкиву или диску. Значение создаваемой при этом силы трения зависит в основном от усилия прижатия колодок к тормозному шкиву и коэффициента трения между шкивом и колод­ками. Колодка прижимается к тормозному шкиву под действием уси­лия замыкающей пружины. Это усилие зависит от степени поджа­тая, т.е. осадки пружины, и от длины пружины в сжатом состоянии. Регулируя длину пружины в сжатом состоянии, можно увеличить или уменьшить усилие прижатия колодок к тормозному шкиву.

Коэффициент трения зависит от свойств материалов, из которых изготовлены тормозные колодки и шкив, а также от состояния по­верхности трения тормозного шкива - наличия смазочного материа­ла, влаги, ржавчины, рисок и канавок. Для повышения стабильнос­ти коэффициента трения и увеличения срока службы тормоза тор­мозные шкивы подвергают термической обработке, чаще всего токами высокой частоты до заданной твердости. Тормозные колодки снабжа­ют фрикционными накладками, изготовленными из смеси асбесто­вой ваты с различными каучуками или смолами. Такие накладки обладают стабильным и высоким значением коэффициента трения. Таким образом, при работе тормоза сила трения создается при при­жатии фрикционных накладок к термообработанной поверхности тре­ния тормозного шкива.



При торможении кинетическая энергия движущегося механизма преобразуется в тепловую энергию нагрева поверхности тормоза. В тяжелом и весьма тяжелом режимах работы кранов температура по­верхности трения тормоза может достигать 200°С и более. Одним из недостатков фрикционных накладок крановых колодочных тормо­зов является то, что при сильном нагреве коэффициент трения накладки по шкиву начинает уменьшаться. При этом пропорцио­нально уменьшается сила трения и увеличивается путь торможе­ния, что может привести к аварии крана. По этой причине нельзя использовать мостовой кран в режиме более тяжелом, чем режим, указанный в его паспорте. Фрикционные накладки быстро изнаши­ваются, если усилие их прижатия к тормозному шкиву превышает заданное значение.

При работе тормоза в результате действия сил трения возникает тормозной момент. Тормозной момент зависит от силы трения и диаметра тормозного шкива. С увеличением диаметра шкива при одинаковых условиях прижатия колодок к шкиву и коэффициенте трения тормозной момент увеличивается. Поэтому на разных крано­вых механизмах установлены тормоза с разными диаметрами тор­мозных шкивов.

Для полной остановки и удержания механизма или поднятого груза в неподвижном состоянии необходимо, чтобы тормозной мо­мент тормоза был больше крутящего момента, создаваемого при­водным двигателем механизма или массой поднятого груза. Превы­шение тормозного момента по сравнению с крутящим называют коэффициентом запаса торможения. Для тормозов механизма подъе­ма груза в зависимости от режима работы коэффициента запаса тор­можения должен быть не менее 1,5.

В зависимости от скорости начала торможения, тормозного мо­мента и массы крана или поднимаемого груза грузовая тележка, кран или груз при торможении будут проходить до полной останов­ки определенный путь, который называют тормозным путем.

Электрогидравлический толкатель, являющийся приводом тор­мозов, состоит из корпуса, в который установлен цилиндр. Ниже цилиндра установлен насос с приводным электродвигателем. Элек­тродвигатель асинхронный, трехфазный, фланцевого типа с короткозамкнутым ротором, мощностью 0,2 кВт. На валу электро­двигателя установлены колесо насоса с крыльчаткой центробеж­ного насоса. В конструкции крыльчатки применены прямые радиальные лопатки, которые обеспечивают нормальную работу толкателя неза­висимо от направления вращения вала электродвигателя. Станина электродвигателя прикреплена болтами к корпусу электродвигателя. Места разъемов уплотняются кольцами из маслостойкой резины, от протекания масла по штоку также предусмотрено уплотнение. Масло в электродвигатель заливают через отверстие, закрываемое пробкой, а сливают через отверстие, расположенное внизу станины. Внутрен­няя полость толкателя наполняется трансформаторным маслом, пос­ле этого для удаления воздуха необходимо закрыть пробку и выпол­нить пятикратное включение толкателя под нагрузкой на шток 100-250 Н. Затем масло доливают до тех пор, пока оно не начнет пониматься по наливному каналу. При отсутствии питания в статорной обмотке электродвигателя гидротолкателя колодки под действием пружины через стержень, верхний рычаг и шток передают усилие на рычаг. Рычаги, поворачиваясь на пальцах, плотно прижимают колодки к поверхности тормозного шкива, создавая необходимую силу трения. При включении механизма включается и электродвигатель электрогидротолкателя. После выключения элек­тродвигателя гидротолкателя пружина снова прижимает ко­лодки к шкиву.

К преимуществам электрогидравлических толкателей в сравнении с электромагнитами относят возможность регулирования времени срабатывания тормоза, плавное нарастание тормозного момента, большое число включений, высокую долговечность, простоту эксплуатации, бесшумность и пр.

3. ТЕХНИКА БЕЗОВАСНОСТИ ПРИ ОБСЛУЖИВАНИИ

МОСТОВЫХ КРАНОВ

Безопасная работа грузоподъемных кранов может быть обеспечена путем соблюдения требований нормативных документов по технике безопасности. Организация службы по соблюдению требований безо­пасности труда при эксплуатации кранов должна осуществляться в соответствии со СНиП 12-03-99 «Безопасность труда в строительстве. Часть I. Общие требования», «Правилами устройства и безопасной эксплуатации грузоподъемных кранов». Предприятие, эксплуатирую­щее кран, назначает ответственных за безопасное производство работ по перемещению грузов кранами на объектах.

Предприятие - владелец крана согласовывает проект производ­ства работ для установки крана на объекте; проводит частичное и полное техническое освидетельствование крана; периодически про­веряет (осматривает) состояние крана и опорного основания; прове­ряет соблюдение установленного Правилами Госгортехнадзора РФ порядка допуска рабочих к управлению и обслуживанию крана; уча­ствует в комиссиях по аттестации и периодической проверке знаний требований безопасности труда машинистом (крановщиком) и об­служивающим персоналом, принимает меры по соблюдению требо­ваний безопасности труда при эксплуатации крана и устранению неисправностей его составных частей и сборочных единиц; назначает машиниста (крановщика) для работы на кране и обеспечивает его производственной инструкцией по безопасному ведению работ.

Предприятие, эксплуатирующее кран, обеспечивает объект про­ектом производства работ (ППР); составляет перечень применяемых мероприятий, обеспечивающих безопасное производство работ в зоне действия крана; устраивает подкрановые пути для движения крана у строящегося сооружения; проверяет выполнение технического осви­детельствования съемных грузозахватных приспособлений и их мар­кировку; назначает стропальщиков для обвязки и зацепки грузов при их перемещении краном; определяет и указывает машинисту и стропальщикам место и порядок безопасного складирования и мон­тажа конструкций; инструктирует машиниста (крановщика) и стро­пальщиков по вопросам безопасного выполнения предстоящей рабо­ты; не допускает без наряда-допуска производства монтажных и погрузочно-разгрузочных работ кранами вблизи линии электропередачи; обеспечивает в соответствии с нормами освещение места производ­ства работ в ночное время; не допускает в рабочую зону крана посто­ронних лиц; обеспечивает сохранность крана по окончании смены.

В Инструкции по монтажу указывается, при какой скорости ветра должны быть прекращены работы по монтажу, демонтажу крана. Зап­рещается проводить монтажные работы на высоте при гололеде, в ночное время, в грозу, туман и при температуре воздуха ниже -20° С. Вести монтаж ночью можно только в случае аварии. Запрещается спускать или поднимать башню ночью. При работе в темное время монтажная площадка должна быть освещена. При гололеде монтаж­ная площадка должна быть посыпана песком. Кран перед подъемом очищают от снега и льда. Не допускается применение обледенелых канатов для строповки. Управлять механизмами крана при монтаже разрешается только монтажникам, имеющим соответствующее удос­товерение. При монтаже и демонтаже крана запрещается: крепить элементы конструкции неполным количеством болтов; устанавли­вать кран у котлована с неукрепленными откосами; вести в зоне монтажа или демонтажа какие-либо работы, не относящиеся непос­редственно к монтажу.

Для уменьшения воздействия опасных и вредных производствен­ных факторов работы по перемещению грузов кранами, техническо­му обслуживанию и ремонту машинист (крановщик) должен выпол­нять, применяя средства индивидуальной защиты. Основным сред­ством защиты от производственных загрязнений и механических повреждений служит спецодежда: костюм мужской или женский, состоящий из куртки с брюками или полукомбинезоном. Спец обувь предназначена для защиты ног машиниста от холода, механических повреждений, масла и т.п. Для работ на открытом воздухе в зимнее время машинист (крановщик) одевает ватную куртку, брюки и ва­ленки, которые весной он сдает на летнее хранение. Для защиты рук от механических повреждений при проведении работ по техническо­му обслуживанию и ремонту крана машинист должен пользоваться специальными рукавицами. Каска необходима для защиты головы от механических повреждений и поражения электрическим током. Ма­шинисту (крановщику) выдается каска темного или оранжевого цвета. Каски белого цвета предназначены для менеджеров. Каски могут снаб­жаться устройствами для защиты от шума. При проведении работ на высоте машинист (крановщик) должен пользоваться предохрани­тельным поясом.

Перед началом работы машинист (крановщик) осматривает кран, проверяет исправность тормозов и приборов безопасности, знакомит­ся с рабочей зоной на объекте и устанавливает кран в ней в соответ­ствии с проектом производства работ, проверяет исправность подкра­новых путей, грузозахватных устройств; определяет маркировку пере­мещаемых грузов, знакомится с опасными грузами и веществами. Машинист (крановщик) участвует в ЕО1) просматривает записи в вахтенном журнале и, если может, устраняет зафиксированные в этом журнале неполадки крана или сообщает о них до начала работы лицу, ответственному за исправное состояние крана. Запрещается приступать к работе, если при этом выявлены неисправности: трещины или де­формация в несущих металлоконструкциях крана ослабленные зажи­мы в местах крепления канатов, сверхнормативные обрывы проволок или поверхностный износ, повреждения деталей тормоза грузовой ле­бедки и устройств безопасности.

Перед пуском крана с него убирают все приспособления, инстру­менты и незакрепленные детали; убеждаются, что правильно и на­дежно установлены плиты противовеса и балласта, рельсовые проти­воугонные захваты; удаляют людей с крановых путей.

Во время работы машинист (крановщик) выполняет следующее:

не допускает на кран посторонних лиц;

проверяет уклон площадки, на которой стоит кран; допускается уклон не более 3°;

соблюдает расстояние от бровки котлована или траншеи до бли­жайшей опоры (колеса, гусеницы, выносной опоры) крана;

выполняет рабочие движения по сигналу стропальщика;

контролирует массу поднимаемых грузов и вылет по указателю в кабине или закрепленному на стреле);

перед подъемом груза предупреждает стропальщика и всех нахо­дящихся около крана о необходимости освободить рабочую зону крана;

устанавливает грузозахватное устройство так, чтобы исключить косое натяжение грузового каната (при подъеме груза расстояние между ним и крюковой подвеской должно быть 0,5 м);

перемещаемые в горизонтальном направлении грузы приподнима­ет на 0,5 м выше встречающихся на пути предметов; следит за отсут­ствием людей в просвете между поднимаемым или опускаемым гру­зом и выступающими частями, зданий и транспортных средств;

приостанавливает работу крана при неравномерной укладке каната
или спадении его с барабана.

Запрещается:

без наряда-допуска устанавливать кран или перемещать груз на расстояние ближе 30 м от крайнего провода действующей линии электропередачи;

одновременно работать имеющимися на кране двумя механизма­ми подъема (основном и вспомогательным);

выполнять рабочие движения на взрывопожароопасной террито­рии без присутствия лица, ответственного за перемещение грузов кранами;

допускать к обвязке и зацепке грузов рабочих, не имеющих прав стропальщика;

поднимать грузы неизвестной массы;

поднимать защемленные грузом грузозахватные устройства и же­лезобетонные изделия с поврежденными петлями.

Перемещать грузы электромагнитной плитой разрешается только в специально отведенных местах склада (пункта грузопереработки). При разгрузке автомашин не разрешается перемещать электромагнитную плиту с грузом над кабиной автомашины, а при разгрузке железнодо­рожных вагонов - над составом. Необходимо постоянно следить за правильностью намотки кабеля подъемного электромагнита на барабан. Машинист не имеет права покидать кабину, если на электромаг­нитной плите есть груз. При работе с грейфером необходимо следить, чтобы челюсти плотно закрывались. Нельзя допускать сильного ослаб­ления грузового каната и выхода его из ручья барабана.

При приближении грозы и ураганного ветра опускают груз и прекращают работу.

По окончании смены машинист (крановщик) обязан: не остав­лять груз в подвешенном состоянии; поставить кран в отведенное для него место и закрепить его; остановить силовую установку и при питании крана от внешнего источника выключить рубильник; сооб­щить своему сменщику о всех неполадках в работе крана и сделать соответствующую запись в вахтенном журнале. При работе в стеснен­ных условиях соблюдают ограничение рабочих движений крана, вы­ставляют предупреждающие и запрещающие знаки безопасности.

Ответственный за безопасное производство работ на строитель­ной площадке и инженерно-технический работник, осуществляю­щий надзор за безопасной работой кранов, обеспечивают своевре­менное оповещение машиниста (крановщика) о резких переменах погоды (пурга, ураганный ветер, гроза, сильный снегопад). Нельзя оставлять без надзора кран с работающей силовой установкой и открытыми дверцами кабин.

Техническое обслуживание (ТО) кранов в условиях строительной площадки приходится выполнять при отсутствии постоянных рабо­чих мест и в различных погодных условиях. Это представляет повы­шенные требования к обеспечению безопасных условий труда. Для выполнения ТО выбирают ровную (чтобы исключить возможность самопроизвольного перемещения машины под воздействием силы тя­жести) свободную от посторонних предметов площадку с твердым нескользким покрытием на расстоянии не менее 50 м от мест хране­ния нефтепродуктов. Под колеса кранов подкладывают колодки, стре­лы опускают до упора. С электрифицированных кранов снимают на­пряжение и вывешивают предупредительные надписи. Пользуются только исправными инструментами, домкратами и приспособления­ми. Инструмент, запасные части, приспособления их нужно подни­мать на кран только в специальной сумке или с помощью веревки. Устанавливают сборочные единицы и составные части на подставки и козлы, испытанными на грузоподъемность. Операции ТО с ходо­выми колесами производят после выпуска воздуха из камер. При мойке крана под большим давлением струи отлетающая грязь может попасть в лицо и глаза. Сборочные единицы очищают сжатым возду­хом, пользуясь защитными очками. Во время заправки крана маши­нист (крановщик) становится так, чтобы ветер не относил на него пары и брызги топлива. Операцию выполняют в рукавицах. При доливе воды в систему охлаждения пробку радиатора открывают мед­ленно, чтобы пар из него выходил постепенно во избежание ожога горячим паром лица и рук. Зимой для заливки горячей воды исполь­зуют металлические ведра с насадкой, позволяющим направлять струю воды. Применять самодельные ведра (например, из резиновых ка­мер) запрещается. При использовании пара для нагрева двигателей соблюдают меры предосторожности. Шланг с паром, вставив в гор­ловину радиатора, закрепляют, чтобы предупредить его выпадение. Масло в картере и рабочая жидкость в гидрооборудовании при рабо­те крана находятся в горячем состоянии, поэтому их сливают осто­рожно в специальные емкости.

Для предотвращения самопроизвольного открывания дверей ка­бин замки должны быть исправными. Двери кабин должны плотно закрываться, так как через отверстия просачивается пыль и загряз­няется воздух. Особое внимание обращают на наличие чехлов в мес­тах прохождения рычагов и педалей. Подушку и спинку сиденья со­держат в хорошем техническом состоянии, не допускается провалов, выступающих пружин и острых кромок.

Грузоподъемные краны имеют электрический привод и относятся к электроустановкам напряжением 1000 В. «Правила технической экс­плуатации электроустановок потребителей» и «Правила техники безо­пасности при эксплуатации электроустановок» потребителей требуют, чтобы машинисты мостовых и электрических грузоподъемных кранов имели определенные знания по электротехнике и электрооборудова­нию кранов, знали и умели оказывать первую помощь при пораже­нии электрическим током. Тело человека является хорошим проводни­ком электрического тока, в зависимости от многих причин и условий воздействие электрического тока может быть от легкого, едва ощути­мого судорожного сокращения мышц пальцев рук, до прекращения работы сердца или легких, т.е. смертельного поражения.

Поражение электрическим током происходит при замыкании элек­трической цепи через тело человека, поэтому машинист (кранов­щик) должен быть обеспечен защитными средствами. По степени надежности изолирующие защитные средства делятся на основные и дополнительные. Основными считаются те защитные средства, изо­ляция которых может надежно выдерживать напряжение установки и посредством которых допускается непосредственное прикоснове­ние к токоведущим частям находящимся под напряжением. Дополнительными являются защитные средства, служащие для усиления действия основных средств и для защиты от напряжения прикосно­вения и шагового напряжения. В крановых электроустановках основ­ными защитными средствами являются изолирующие перчатки, а дополнительными средствами - изолирующие галоши и коврики. При поражении электрическим током необходимо как можно скорее освободить пострадавшего от действия тока, так как от продолжи­тельности этого действия зависит тяжесть электротравмы. При этом необходимо помнить, что прикасаться к человеку, находящемуся под напряжением, можно только при условии принятия необходи­мых мер предосторожности. Меры первой помощи будут зависеть от состояния пострадавшего после освобождения его от действия элект­рического тока.

ЗАКЛЮЧЕНИЕ

Мною разработан проект электрооборудования мостового крана грузоподъемностью 35т.

В общей части курсового проекта указаны основные требования, предъявляемые к электрооборудованию крана, который предназначен для производства грузоподъемных работ. С помощью мостового крана достигаются высокие темпы производства. Он обеспечивает обслуживание большой площади рабочей зоны, равной ходу грузовой тележки, умноженной на длину подкранового пути.

В расчетной части проекта произведен расчет и выбор мощности электродвигателя грузоподъемного механизма. Произведен проверочный расчет элементов силовой цепи. Выбрана аппаратура защиты и управления.

Выбранное электрооборудование соответствует нормам ПУЭ.

Коммутационная аппаратура может осуществлять защиту потребителей от перегрузки и коротких замыканий.

В разделе «Техника безопасности» описаны вопросы техники безопасности при обслуживании кран.

Считаю, что выбранное мной электрооборудование позволит уменьшить простои при работе крана, улучшить эксплуатационные свойства и повысить надежность и безопасность работы.


ЛИТЕРАТУРА:

1. Александров К.К., Кузьмина Е.Г. Электротехнические чертежи и схемы - М.: Энергоатомиздат, 1990, 288 с.

2. Барыбин Ю.Г., Федоров Л.Е. Справочник по проектированию электроснабжения-М.: Энергоатомиздат, 1990, 576 с.

3. Карпов Ф.Ф, Козлов В.Н. Справочник по расчету проводов и кабелей

М.: Энергия, 1969,264с.

4. Зимин Е.Н. Электрооборудование промышленных предприятий и установок - М.: Энергоатомиздат, 1991

5. Межотраслевые правила по охране труда (правила безопасности) при
эксплуатации электроустановок - СПб.: Издательство ДЕАН, 2001,
208 с. "

6. Пижурин П.А. Справочник электрика лесозаготовительного

предприятия - М.: Лесная промышленность, 1988, 363 с.

7. Пижурин П.А. Электроборудование и электроснабжение лесопромышленных и деревообрабатывающих предприятий – М:Лесная промышленность, 1993,263с.

8. Правила устройства электроустановок - М.: Главгосэнергонадзор России, 2001, 6 издание

9.Правила устройства электроустановок - СПб.: Издательство ДЕАН, 2002,928с.

Для регулирования равномерного отхода колодок от шкива электромагнит вновь ставят в замкнутое положение отжимной гайкой 4. Далее ослабляют контргайку 7 и вращением регулировочного винта 8 добиваются равномерного зазора между обеими колодками и шкивом. Величину зазора (0,4 -1,0 мм) определяют щупом или путем покачивания рычагов 9. После окончания регулировки винт 8 фиксируют контргайкой 7.
Установочную длину замыкающей пружины измеряют линейкой с ценой деления 1 мм при незамкнутом якоре электромагнита. Расчетная величина тормозного момента тормоза приводится в заводской инструкции для каждого механизма крана. Этому моменту соответствует определенная длина замыкающей пружины при замкнутом тормозе, приводимая в инструкции на тормоз. Если длина пружины отличается от установочной, то гайку 3 удерживают ключом от вращения и вращают тягу 1 за квадратный хвостовик в ту или иную сторону, увеличивая или уменьшая длину пружины.


Рис. 9. Регулирование тормозов с электрогидравлическим приводом:
а - общий вид; б - намеряемые параметры

Тормоза с приводом от ТКТГ регулируют (рис. 9, а) в той же последовательности, что и тормоза ТКТ. Отличия заключаются в том, что вместо хода электромагнита регулируют ход штока толкателя гайками 1, а длину пружины устанавливают гайкой 2 на тяге пружины. Равномерный отход колодок от тормозного шкива обеспечивается винтом 3. Шток 4 толкателя не должен доходить до нижнего упора при наложенных на шкив колодках. При этом необходимо обеспечить минимальное расстояние h, которое получается при вычитании из максимального расстояния Н (рис. 9, б), замеренного при поднятом до отказа штоке, установочного хода Рус, приведенного в табл. 6.

Машинист обязан ежедневно тщательно осматривать и регулировать тормоза крана!
В мостовых электрических кранах предусмотрены средства коллективной защиты от поражения электрическим током. В этих кранах применяют четыре системы питания электрических аппаратов: трех- или четырехпроводную сеть трехфазного переменного тока напряженней 220/380 В; двухпроводную сеть постоянного тока; двухпроводную сеть однофазного переменного тока напряжением 220 В; двухпроводную сеть однофазного переменного тока напряжением 12-36 В. Электрооборудование кранов относится к разряду установок с напряжением до 1000 В. Эксплуатация таких установок связана с серьезной опасностью поражения электрическим током.
Напряжение, под действие которого попал человек, зависит от вида касания к токоведущим частям: однофазное и двухфазное. При однофазном касании человек непосредственно соприкасается с частями электрооборудования, нормально или случайно находящимися под напряжением. Степень поражения человека при таком касании зависит от качества изоляции проводов сети, ее протяженности, а также от того, имеет ли электрическая сеть заземленную или изолированную нейтраль. При однофазном касании в сети с заземленной нейтралью человек попадает под фазовое напряжение, которое в 1,73 раза меньше линейного. Сила тока, протекающего через тело человека, будет зависеть от фазового напряжения, сопротивления тела человека и изоляции пола, на котором стоит человек. При двухфазном касании человек одновременно оказывается под напряжением двух различных фаз. В этом случае сила действующего тока зависит от линейного напряжения и сопротивления тела человека.
Для защиты обслуживающего персонала электроустановок (ГОСТ 12.4.011-87) применяют следующие технические средства: оградительные и изолирующие устройства; предохранительные устройства; устройства автоматического контроля и сигнализации, автоматического отключения, защитного заземления и зануления, понижения напряжения. При обслуживании электрооборудования мостовых электрических кранов помимо средств коллективной защиты обязательно применение средств индивидуальной защиты.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Размещено на /

НОВОСИБИРСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВОДНОГО ТРАНСПОРТА

Кафедра СМ и ПТМ


Лабораторная работа №6

Тема: «Тормозные устройства и механизмы подъема грузоподъемных машин»


Новосибирск 2008

Тормозные устройства


Назначение, принцип действия и классификация.

Удержание груза на весу, предотвращение недопустимого разгона груза при спуске, принудительное замедление движения механизма и остановка его обеспечиваются тормозами.

Принцип действия тормозов заключается в создании тормозного момента за счет трения между вращающимся шкивом и стационарными колодками или лентой, поверхностями дисков или конусов.

Конструктивно тормоза делятся на радиальные (колодочные и ленточные) и осевые (дисковые и конусные). Они могут быть управляемыми и автоматического действия, нормально открытыми (постоянно разомкнутые и замыкаемые по мере надобности) и нормально закрытыми (постоянно замкнутые и размыкаемые в момент начала работы механизма). Удержание тормоза в замкнутом состоянии может выполняться пружинами или специальным грузом. Размыкание автоматического тор моза производится либо электромагнитом, шарнирно прикрепленным к тормозному рычагу, либо различного рода толкателями, наибольшее распространение из которых получили электрогидравлические толкатели.

Закрытые тормоза более безопасны в работе, чем открытые, что особенно важно для механизмов подъема и изменения вылета стрелы, однако управление ими более тяжелое, в связи, с чем они применяются преимущественно с автоматическим управлением.

Все тормоза рассчитываются на величину тормозного момента, необходимую для остановки механизма на заданном пути или при заданном времени торможения.

Местом установки тормозного шкива обычно является наиболее быстроходный вал механизма, где действует наименьший крутящий момент, и, следовательно, тормоз имеет наименьшие габариты. В качестве тормозного шкива обычно используется одна из полумуфт соединения двигателя с редуктором. Для надежности работы необходимо, чтобы между тормозом и затормаживаемым элементом имелась жесткая связь.

Колодочные тормоза.

Наиболее распространенными в подъемно-транспортных машинах являются колодочные тормоза. Применяются самые разнообразные конструкции колодочных тормозов, различающиеся в основном по схемам рычажных систем. Колодок может быть одна или две.

Одноколодочные тормоза применяется для создания небольших тормозных моментов. Главным их недостатком является одностороннее давление на вал, в связи, с чем вал испытывает значительный изгибающий момент.

Колодки двухколодочного тормоза расположены диаметрально относительно шкива и создают равное, но противоположное давление на вал, что исключает изгибающий момент (рис. 1).

Тормозной момент двухколодочного тормоза состоит из суммы тормозных моментов, развиваемых каждой колодкой. Между колодками и шкивом под действием нормальных к поверхности шкива давлений N1 и N2, возникают силы трения мN1 и мN2, направление которых зависит от направления вращения шкива. Тормозной момент при диаметре шкива Dт будет ранен Mт = мN Dт.

Так как величина тормозного момента находится в прямо пропорциональной зависимости от коэффициента трения между колодками и шкивом, то для уменьшения габаритов тормоза, уменьшения усилий на рычагах, в тормозах используются специальные материалы, обладающие повышенными фрикционными свойствами. Наиболее распространенными фрикционными материалами в тормозах ПТМ являются асбестовая и вальцованные ленты.

Рис. 1. Расчётная схема двухколодочного тормоза: 1 – тормозной шив, 2 – тормозные колодки, 3 – вертикальные рычаги, 4 – треугольник; 5 – электромагнит; 6 – горизонтальный рычаг; 7 – затормаживающий груз.


Фрикционный материал обычно крепят к тормозной колодке латунными или медными заклепками. Чтобы головка заклепки не повреждала поверхность шкива, ее делают утопленной во фрикционную накладку не менее, чем на половину толщины накладки. Центр заклепки должен располагаться не менее, чем в 15 мм от края накладки во избежание выкрашивания, расстояние между заклепками рекомендуется не менее 80-100 мм.

В последнее время все более применяется приклеивание фрикционного материала к колодкам термостойкими клеями.

Тормозные шкивы выполняются преимущественно стальными. Поверхность обода должна быть тщательно обработана и,во избежание чрезмерною износа, обладать твердостью Нв=200-400 в зависимости от режима работы.

Управление колодочными тормозами осуществляется электромагнитами, электромеханическими и электрогидравлическими толкателями, включаемыми в электросеть параллельно двигателю механизма.

Поэтому размыкание тормоза и освобождение механизма происходи! одновременно с включением двигателя. При обесточивании привод тормоза и двигатель механизма выключаются, тормоз под действием замыкающей силы замыкается и производит остановку механизма.

Тормозные электромагниты подразделяются на длинноходовые и короткоходовые. У первых ход якоря составляет 50-80 мм, а у вторых-2-4 мм. Короткоходовые электромагниты устанавливаются преимущественно на тех же рычагах, что и колодки, а длинноходовые связаны с ними специальной рычажной системой.

По потребной работе электромагнит может быть выбран по каталогу.

В процессе работы должен быть обеспечен равномерный отход колодок с обеих сторон и по длине колодки. Для регулировки отхода используются специальные болты, устанавливаемые на фундаменте тормоза под колодочными рычагами и на рычагах под колодками.

Электрогидравлические и электромеханические толкатели также могут быть подобраны по потребной работе.

Электрогидравлический толкатель представляет собой комплекс центробежного насоса, приводимого в действие электродвигателем малой мощности, и поршневой группы, соединенной с рычажной системой тормоза посредством штока (рис. 2). Насос и поршень (а для уменьшения габаритов - и электродвигатель) заключены в единый корпус. Под воздействием крыльчатки рабочая жидкость (преимущественно трансформаторное масло) перемешает поршень, приводя в действие рычажную систему тормоза.



Рис. 2. Колодочный тормоз с электрогидравлическим толкателем: 1 - электрогидравлический толкатель; 2 – затормаживающая пружина; 3 – тормозные колодки; 4 – тормозной шкив.


В электромеханическом толкателе соединений с рычажной системой шток перемешается под воздействием центробежной силы вращающихся масс.

Как те, так и другие толкатели не чувствительны к механическим перегрузкам, ход штока у них может быть ограничен в любую сторону на любую величину. Они обеспечивают плавную работу с большим числом включений в час, позволяют регулировать время срабатывания тормоза и время торможения, относительно просты в эксплуатации.

Ленточные тормоза.

В ленточных тормозах тормозной момент создается за счет трения фрикционного материала, укрепляемого на стальной ленте, огибающей шкив, о поверхность тормозного шкива.

В зависимости от расположения точек крепления концов ленты относительно оси вращения тормозного рычага ленточные тормоза подразделяются на суммирующие, простые и дифференциальные.



Рис. 3. Ленточные тормоза: а) – суммирующий; б) – простой; в) – дифференциальный.


В суммирующем тормозе (рис. 3. а) оба конца ленты прикреплены к тормозному рычагу с одной стороны от оси вращения его. Плечи закрепления концов ленты могут быть разными, при одинаковых плечах величина тормозного момента не зависит от направления вращения шкива. Применяются они преимущественно в тех механизмах, где требуется постоянство тормозного момента независимо от направления движения механизма (механизм поворота, передвижения).

Толщина стальной ленты определяется ее прочностью в самом опасном сечении при максимальном натяжении ленты. В целях обеспечения равномерной гибкости и прилегания ленты к шкиву по всей окружности толщина ленты более 10 мм не рекомендуется.

При растормаживании отход ленты должен быть обеспечен не менее, чем на 1-5-1,5 мм.

Тормоза с осевым нажатием.

В этих тормозах необходимое для получения тормозного момента усилие действует вдоль оси тормозного вала. К ним относятся дисковые и конические тормоза.

В дисковых тормозах (рис. 4) ряд дисков I фиксируется со скольжением на шпонках в неподвижном корпусе, а второй ряд дисков II получает такую же связь с тормозным валом. При сжатии обеих групп дисков силой К между ними возникает сила трения, создающая тормозной момент.



Рис. 4. Дисковый тормоз.


Конический тормоз (рис. 5) состоит из подвижного 2 и неподвижного конусов 1. Осевым усилием К подвижный конус прижимается к неподвижному, в результате чего на образующей конической поверхности сила трения создает тормозной момент.


Рис. 5. Конический тормоз.


Однако, во избежании заклинивания конусов угол Р не рекомендуется принимать меньше 30°.

С учетом функционального назначения все тормоза должны отвечать следующим требованиям: обладать достаточной прочностью и долговечностью; иметь малые габариты и массу; быть простым в изготовлении, иметь свободный доступ для осмотра и ремонта; трущиеся детали должны иметь минимальный износ; температура на поверхности нагрева не должна превышать предельного значения.


Изучение конструкции и основ проектирования механизма подъема


Назначение и разновидности механизма подъема

Механизм подъема предназначен для подъема и опускания груза на необходимую высоту с заданной скоростью и удержания груза на любой, требуемой условиями технологического процесса, высоте.

Подъемный механизм может быть самостоятельным (тельфер, таль) или входить в состав другой перегрузочной установки, например в состав крана.

Механизм подъема включает в себя двигатель, передаточный механизм (редуктор или редуктор и открытую передачу), тормоз, грозовой барабан, блоки, тяговый орган (чаще всего стальной канат) и грузозахватное устройство (крюк, грузовая подвеска, грейфер и т.п.).

Входящие в состав кранов механизмы подъема грузов (грузовые лебедки) в зависимости от рода перегружаемого груза подразделяются на грейферные и крюковые лебедки.

Крюковые подъемные лебедки обычно имеют один электродвигатель, один или два грузовых барабана. При этом барабаны могут вращаться только одновременно и без изменения направления вращения относительно друг друга.

В зависимости от количества этих конструктивных элементов крюковые лебедки называются одномоторными однобарабанными или одномоторными двухбарабанными.

Конструктивное исполнение крюковых лебедок может быть самым различным в зависимости от количества барабанов и передаточных устройств (рис. 1. а, б, в).



Рис.6. Схемы одномоторных крюковых лебедок:

1 - электродвигатель; 2 - тормоз: 3 - редуктор: 4 - барабан: 5 – открытая передача.


Грейдерные (двухбарабанные) лебедки различают одномоторные и двухмоторные, позволяющие получить различные сочетания вращения барабанов, что необходимо для обеспечения работы грейфера. В грейферных лебедках кранов один барабан является замыкающим, а второй поддерживающим, аналогично и называются лебедки - одна замыкающая, а вторая - поддерживающая.

В процессе работы грейферного крана возможны следующие сочетания вращения барабанов:

При подъеме и опускании грейфера барабаны обеих лебедок вращаются синхронно;

При зачерпывании груза грейфером барабан замыкающей лебедки вращается в сторону подъема, барабан поддерживающей лебедки - на опускание, обеспечивая слабину каната по мере заглубления грейфера;

При раскрытии грейфера барабан замыкающей лебедки вращается на опускание, а барабан поддерживающей заторможен, иногда для более быстрого раскрытия грейфера барабаны лебедок вращают в разные стороны, т.е. замыкающий на спуск, а поддерживающий - на подъем.

Одномоторные грейферные лебедки (рис. 2) имеют один двигатель, обеспечивающий различное сочетание вращения барабанов посредством фрикционных муфт и тормозов. Двигатель жестко связан с замыкающим барабаном, поддерживающий же барабан присоединяется к двигателю посредством управляемой фрикционной или планетарной муфты.

Одномоторные лебедки менее совершенны и более сложны в управлении, в них совмещение таких операций, как подъем-опускание и раскрытие-закрытие грейфера невозможно (рис. 2.а).

Двухмоторные лебедки позволяет избежать этих недостатков, хотя они сложнее и дороже одномоторных лебедок, но повышение оперативности и производительности кранов окупает дополнительные затраты. В настоящее время двухмоторные лебедки являются основным типом грейферных лебедок кранов. Из большого разнообразия двухмоторных лебёдок наибольшее применение имеют лебедки, состоящие из двух нормальных крановых крюковых лебедок с независимыми двигателями (рис. 2. б), а также лебедки с планетарной связью между барабанами.

Главным требованием, предъявляемым к работе двухмоторных лебедок является равномерность распределения нагрузок на канаты и синхронность вращения барабанов с целью обеспечения равной скорости выборки канатов.


Рис. 7. Схемы грейферных лебёдок:

а – одномоторная; б – двухмоторная:

1 – барабан; 2 – открытая передача; 3 – соединительная муфта с тормозным шкивом; 4 – редуктор; 5 – двигатель.


В зависимости от взаимного расположения двигателя и барабана различают следующие компоновочные схемы лебедок механизма подъёма: П - образную, Z - образную и соосную, которые принимаются с учетом конкретных условий работы и наличия производственных площадей (рис. 3).



Рис. 8. Компоновочные схемы лебедок:

а – «П» - образная; б - "Z"-образная; в - соосная. 1 – барабан; 2 – электродвигатель; 3 – тормоз; 4 - редуктор.


В механизмах подъема применяются нормально замкнутые тормозные устройства с автоматическим управлением.

Исходные данные

Грузоподъёмность ;

Скорость поднимания груза ;

Продолжительность включений ПВ%=32%;

Диаметр барабана =800 мм;

Расчет электродвигателя


, кВт - статистическая мощность электродвигателя для крюкового режима работы

- общий к.п.д.


К.п.д. полиспаста

К.п.д. блока

К.п.д. барабана

К.п.д. лебедки

Так как электродвигатели грузоподъемных машин работают в повторно-кратковременном режиме, то производят пересчет мощности для случая, если фактическая (расчетная) относительная продолжительность включения (ПВ%) не совпадает с каталоговой по формуле:



где ПВ%ф = 32 % - фактическая относительная продолжительность включения

ПВ%к = 40 % - каталоговая относительная продолжительность включения

кВт

По каталогу выбирается электродвигатель из условия:,

где Nк – номинальная мощность электродвигателя (значение по каталогу), кВт;

Nст – статическая мощность электродвигателя, кВт.

Основные параметры электродвигателя:

Тип двигателя – МТН 713-10;

Мощность Nдв = 160 кВт;

Число оборотов nдв = 585 об/мин;

Момент инерции Jр = 15 кг·м2;

Ширина двигателя Вдв = 790 мм.

Расчет редуктора

Общее передаточное число механизма:


,


где - частота вращения вала электродвигателя, об/мин;

Частота вращения барабана, об/мин.


,


где Vп – скорость подъема груза, 55 м/мин;

m – кратность полиспаста механизма подъема = 2;

0,8м – диаметр барабана.

;

об/мин.

По передаточному числу выбирается редуктор, и выписываются его основные параметры. Выбранный редуктор должен удовлетворять следующим условиям (с погрешностью ):


Суммарное межосевое расстояние


Основные параметры редуктора:

Тип редуктора – РМ1000;

Передаточное число редуктора iрк = 15,73 об/мин;

Число об/мин на быстроходном валу nр = 600 об/мин;

Мощность на быстроходном валу Nр = 168 кВт;

«П»-образная компановочная схема

3. Расчет тормоза

Тормоз выбирается по необходимому тормозному моменту:


,Нм


где - рабочий (статический) момент на быстроходном валу редуктора, создаваемый массой неподвижно висящего груза, Н∙м;

2,0 коэффициент запаса торможения, зависящий от режима работы

,

тормозной подъемный устройство

где Gн – грузоподъемная сила крана, Н;

– диаметр барабана, м;

iр – передаточное число редуктора;

Общий к.п.д. механизма подъема;

m – кратность полиспаста.

По величине тормозного момента выбирается тормоз, при этом необходимо чтобы :

Основные параметры тормоза:

Тип тормоза – ТКТГ-600М;

Тормозной момент Мт = 5000 Н·м;

Отход колодок = 1,8 мм;

Тип толкателя - ТГМ-80;

Усилие толкателя = 800 Н;

Ход толкателя = 50 мм.

4. Расчет муфты

Муфта выбирается по каталогу исходя из крутящего момента:


,Нм


где к1 – коэффициент, учитывающий степень ответственности механизмов, к1=1,3;

к2 - коэффициент, зависящий от режима работы, к2=1,3;

Мр – рабочий момент на быстроходном валу редуктора



Основные параметры муфты:

Втулочно-пальцевая муфта;

Диаметр тормозного шкива Dшк = 600 мм;

Число пальцев – 8;

Момент инерции Jм = 28,6 кг∙м2;

Наибольший передаваемый момент Мкр = 8000 Н

Размер ступицы:

l=150мм dк =89,5мм

lк=135мм L=245мм

Размещено на

Похожие рефераты:

Обоснование выбранной конструкции. Анализ существующих серийно выпускаемых машин. Расчет механизма подъема: выбор каната, определение основных размеров блоков и барабана, выбор двигателя, редуктора, муфты и тормоза. Расчет механизма передвижения крана.

Расчет механизма подъема груза электрического мостового крана грузоподъемностью Q = 5т для перегрузки массовых грузов: коэффициент полезного действия полиспаста, разрывного усилия в канате при максимальной нагрузке, мощности двигателя механизма подъема.

Изучение принципа работы гидродинамических передач, их достоинств и недостатков. Способы загрузки разгрузки ковшей скрепера. Особенности скрепера с элеваторной загрузкой. Назначение, устройство, схема лебедки с машинным приводом и ленточного конвейера.

Применение и универсальность использования грузоподъемных машин, роль их автоматизации как составного элемента производства. Основы конструирования тележки мостового крана. Выбор крюковой подвески, каната, двигателя, редуктора, типоразмера тормоза.

Характеристика механизма подъема, выбор электродвигателя, полиспаста, каната и редуктора. Расчет блока и грузового момента на валу тормозного шкива. Основные размеры и металлоконструкция крана. Проверка статического прогиба и расчет нагрузки конструкции.

Расчет давления воздуха в тормозном цилиндре при торможении. Оценка правильности выбора воздушной части тормоза. Выбор схемы тормозной передачи. Определение допускаемого нажатия тормозной колодки. Расчет передаточного числа рычажной передачи вагона.

Расчет механизма подъема крана. Выбор двигателя, соединительной муфты, передачи и муфты с тормозным шкивом. Расчет металлоконструкции тележки, ограничителя грузоподъемности, металлической конструкции моста. Кабина управления и рабочее место крановщика.

Назначение и устройство механизма поворота гусеничного трактора. Устройство и работа планетарного механизма. Строение и действие тормозной системы. Уход за механизмом поворота гусеничного трактора. Основные неисправности и способы их устранения.

Расчёт параметров тормозной системы автомобиля. Коэффициенты распределения тормозных сил по осям. Суммарная площадь тормозных накладок колёсного тормоза. Удельная допустимая мощность трения фрикционного материала. Суммарный угол охвата тормозных колодок.

Режимы приработки и испытания агрегатов трансмиссии. Выбор асинхронной машины. Основные требования, предъявляемые к конструкции испытательных стендов. Особенности конструкции стендов для испытания ведущих мостов. Электрические тормоза переменного тока.

Механизм подъема груза мостового крана: выбор полиспаста, крюка с подвеской, электродвигателя, редуктора, муфт и тормоза; каната и его геометрических параметров; схема крепления конца каната на барабане; выбор подшипников и их проверочный расчет.

Характеристика бетоносмесителя, принцип его работы. Определение конструктивно-кинематических параметров. Дополнительные размеры узлов и деталей. Потребляемая мощность и кинематический расчет привода. Техника безопасности при эксплуатации и обслуживании.

Рычажная передача пассажирского вагона, ее отличие от передач грузовых вагонов. Принцип действия тормозной рычажной передачи 4х-осного пассажирского вагона, ее испытание. Ручная, полуавтоматическая и автоматическая регулировка рычажной передачи.

Выбор схемы механизма подъёмного устройства, электродвигателя и проверка на перегрузочную способность. Определение тормозного момента, выбор тормоза и соединительной муфты, сопротивление передвижению на прямолинейном пути. Расчет устойчивости крана.

Тормоза мостовых кранов


К атегория:

Узлы мостовых кранов

Тормоза мостовых кранов


В мостовых кранах должны применяться только стопорные тормоза, которые обеспечивают остановку механизмов и удерживают их в неподвижном состоянии. Такими тормозами являются колодочные или дисково-колодочные, имеющие автоматическое пружинное замыкание; их размыкание осуществляется электромагнитами, электрогидравлическими или электромеханическими толкателями или гидравлическими управляемыми устройствами.

На рис. 4.3 показан автоматический, т. е. замыкающийся автоматически при выключении тока, двухколодочныи пружинный тормоз типа ТКТ с короткоходовым электромагнитом переменного тока (ВНИИПТМАШ). Вертикальные рычаги и шарнирно соединены с основанием, а колодки шарнирно с этими рычагами. К верхнему концу рычага жестко прикреплена скоба, внутри которой расположены шток и пружина. На штоке, между скобой и концом рычага расположена вспомогательная пружина. Пружина, установленная между скобой и гайками, навинченными на шток, служит для замыкания тормоза, а вспомогательная пружина способствует отходу рычага с колодкой от тормозного шкива при растормаживании.

Короткоходовой электромагнит с якорем закреплен на рычаге, а его центр тяжести расположен справа от оси рычага. Поэтому момент, создаваемый силой тяжести электромагнита, стремится поворачивать рычаг по часовой стрелке и, следовательно, отводить правую колодку от тормозного шкива. При выключенном электромагните сжатая рабочая пружина с помощью скобы и штока стягивает верхние концы рычагов, вследствие чего обе колодки прижимаются к тормозному шкиву, и тормоз замыкается. При включении электромагнита якорь, притягиваясь к сердечнику, поворачивается по часовой стрелке относительно оси своего шарнира и нажимает на конец штока тормоза. В результате пружина сжимается еще больше, рычаги поворачиваются относительно своих нижних шарниров, и обе колодки отходят от тормозного шкива.

Рис. 4.3. Колодочный тормоз с электромагнитом

Угол поворота рычага 5, определяющий величину радиального отхода правой колодки, зависит от величины зазора между головкой болта 6 и его упором. Зазор этот устанавливается с таким расчетом, чтобы обеспечивался радиальный отход колодки на заданную величину. Для устранения возможности поворота колодок после их отхода от шкива в них установлены подпружиненные фиксаторы трения.

Для управления тормозами применяют однофазные магниты типа МО, которые изготовляют для напряжения 220, 380 и 500 В. Момент магнитов при ПВ 40% составляет: МО-100Б 55 кгс-см и МО-200Б 400 кгс-см, а масса магнитов соответственно 3,5 и 23 кг. Магнитопровод магнитов состоит из двух частей - ярма и якоря, которые набираются из листов электротехнической стали. На ярме закреплена катушка, а якорь может свободно поворачиваться на оси, закрепленной в стойках ярма. Усилие электро-магнита передается перемычкой, расположенной между боковинами якоря. Собственное время втягивания якоря составляет около 0,03 с, а время отпадания - около 0,015 с. Число включений магнитов допускается не более 300 в час при ПВ 40%.


Рис. 4.4. {Солодочный тормоз с электрогидравлическим толкателем

Пружинные тормоза с короткоходовыми электромагнитами просты по конструкции и весьма компактны. Однако закрепление электромагнита на одном из рычагов создает большую разницу в моментах инерции рычагов. Поэтому при резком замыкании тормоза динамическая неуравновешенность тормозных рычагов вызыет неравномерное движение последних и резкие удары колодок о тормозной шкив. Это приводит к появлению кратковременно дей-с^ующих (в течение сотых долей секунды) радиальных динамически нагрузок, которые в 2-3 раза превышают соответствующие статические силы давления колодок на тормозной шкив. Поэтому Bd большее распространение получают тормоза с электрогидр авлич емкими толкателями, обладающие рядом преимуществ по сравнен;!10 с электромагнитными. К ним относятся практически неоГранигш[ное число включений, возможность работы толкателя при любом режиме, повышенная долговечность, меньшая электрическая мощность и в 12-20 раз меньший пусковой ток.

Его шток также шарнирно соединен с большим плечом двуплечего рычага, установленного на тормозном рычаге. С меньшим плечом рычага соединена тяга, прикрепленная гайками к тормозному рычагу. Замыкание тормоза осуществляется усилием вертикальных пружин. При движении штока толкателя вверх рычаг поворачивается, сжимая пружины, а рычаг вместе с тормозной колодкой отходит от шкива до тех пор, пока упор не дойдет до основания. Затем отходит от колодки рычаг.

Характеристики и размеры тормозов с электрогидравлическими толкателями приведены в табл. 4.20 и 4.21. При необходимости величина тормозного момента, указанная в таблице, может быть путем регулировки уменьшена: до V3 для тормозов со шкивами диаметром 160-400 мм, до V2 - со шкивами диаметром 500 и 600 мм, до 2/3 - со шкивами диаметром 700 и 800 мм. При. первоначальной регулировке хода шток толкателя устанавливают в верхнее положение, затем опускают на величину 5Х и фиксируют положение тяги 4 относительно рычага 6 гайками 5. При увеличении хода штока вследствие износа колодок до величины 5 тормоз регулируют заново.

В электрогидравлических толкателях - одноштоковых (рис. 4.5, а, б) и двухштоковых (рис. 4.5, в) - используется принцип создания гидравлического давления под поршнем; шток поршня получает при этом прямолинейное движение. Корпус толкателя заполнен рабочей жидкостью - маслом АМГ-10 ГОСТ 6794-75 (при температуре окружающего воздуха +50° ч- +15°С), жидкостью ПГ-271А или ПМС-20 (при температуре окружающего воздуха +20°С - 60°С). Внутри корпуса закреплен цилиндр, в котором перемещается поршень со штоком, и электродвигатель. На валу последнего закреплено роторное колесо с односторонним всасыванием. Корпус и шток имеют проушины для присоединения соответственно к основанию и к двуплечему рычагу тормоза.

При работающем электродвигателе роторное колесо создает давление рабочей жидкости, которая перемещает поршень вместе со штоком 3 вверх и удерживает его в этом положении в течение всего времени работы электродвигателя. Рабочая жидкость в это время перетекает из пространства над поршнем по каналам между цилиндром и корпусом к нижней части колеса 5. При выключении электродвигателя давление рабочей жидкости падает, и поршень под действием собственного веса и усилия со стороны тормоза опускается вниз.

К недостаткам электрогидравлических толкателей относятся существенное уменьшение усилия на штоке при отклонении геометрической оси толкателя от вертикали, большее по сравнению с электромагнитным приводом время срабатывания и изменение его величины в зависимости от температуры окружающего воздуха.

Рис. 4.5. Электрогидравлические толкатели:
а - типа ТЭГ; б - типа ТГМ; в - типа Т


Рис. 4.6. Электромеханический толкатель

Любую пространственную установку при некотором сокращении времени торможения обеспечивают электромеханические (центробежные) толкатели, одна из конструкций которого ,"en":["cV_SZpTF8Vs","L4B2Bh-luqQ","L4B2Bh-luqQ","DEleue_U6gY"],"es":["q82_0xmrhK4","9Wwj4bsZVCs","TU-8EBMDUIg","WYzLN1TbrGw"],"pt":["NvUW2mzZZW0","5yw-mvr8Tko","Y9KMtW9whv0","v1DD028dbmo"],"fr":["dNZ9ZxfR_PM"],"it":["5PSnMpswnXM"],"pl":["dA6C15FP_ZA"],"ro":["WuYpqjKSt_o","MPnkvNBigOI","_cTe2cz5nBI"]}

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама