THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Тормоза предназначены для снижения скорости транспортного средства или его остановки, а также для удержания припаркованного транспортного средства от движения во время остановки.

Существуют различные типы тормозных систем, каждая из которых предназначена для определенных целей:

Рабочие тормозные системы позволяют регулировать скорость движения автомобиля и останавливать его.

Запасные системы предназначены для остановки машины при отказе рабочего тормоза.

Стояночные тормозные системы нужны для удержания автомобиля в неподвижном положении, а вспомогательные для поддержания неизменной скорости движения.

Все эти функции крайне необходимы каждому автомобилю и должны быть известны каждому автомобилисту.

Схема тормозной системы, её устройство и принцип работы

На автомобилях обычно устанавливаются рабочие, запасные и стояночные тормозные системы .

Рабочая система нужна для управления понижением скорости и остановки транспортного средства, если она откажет, то будет задействована запасная, выполняющая аналогичные функции, причем она может быть как автономной системой, так и частью самой рабочей тормозной системы. Наконец, стояночные устанавливаются на авто для его удержания на месте, например, при парковке.

Автомобильная тормозная система состоит из тормозного привода и тормозного механизма .

Тормозной механизм нужен для уменьшения скорости движения и остановки машины. Обычно на автомобилях имеются фрикционные механизмы торможения, работающие на основании сил трения. Тормозной механизм зачастую находится в колесе, а тормозной привод в случае со стояночной системой может быть за коробкой передач или же за раздаточной коробкой.

Все тормозные механизмы включают в себя вращающуюся и неподвижную части. Роль первой их них в барабанном механизме играет тормозной барабан, а вторая представлена тормозными колодками. Обычно на передней и задней осях легковых транспортных средств ставятся дисковые механизмы торможения, состоящие из двух колодок и тормозного диска.

Тормозной привод необходим для того, чтобы управлять тормозными механизмами. В составе тормозных систем автомобилей могут присутствовать такие типы тормозных приводов, как гидравлический , электрический , механический и пневматический .


Чтобы рассмотреть принцип работы тормозных систем, обратим внимание на гидравлические рабочие системы . В этом случае при нажатии на педаль усилитель получит нагрузку, создающую на основном тормозном цилиндре добавочное усилие. Затем поршень главного цилиндра пустит жидкость к цилиндрам возле колёс по трубопроводам, что приведет к увеличению давления жидкости в тормозном приводе. В результате поршни цилиндров, находящихся у колёс, переместят тормозные колодки ближе к дискам.


При зажатии педали в дальнейшем произойдет увеличение давления жидкости и сработают тормозные механизмы, что приведёт к уменьшению скорости вращения колёс и возникновению тормозной силы в области контакта дороги и шин. Чем сильнее нажата тормозная педаль, тем быстрее произойдет торможение автомобиля, а давление жидкости может достигнуть 15 Мпа.

При завершении процесса торможения тормозная педаль перейдет в изначальное положение посредством возвратной пружины. В это же положение переместится и поршень основного тормозного цилиндра, а пружинные элементы отведут колодки от барабанов. После этого тормозная жидкость перейдет из колесных цилиндров в главный и давление в системе упадет.

Вот так и происходит весь цикл работы тормозной системы.

Типы тормозных систем

Стояночная тормозная система


Стояночный тормоз предназначен для удержания автомобиля на месте относительно опоры. Обычно данная тормозная система используется для торможения на стоянке и последующего удержания транспортного средства на парковочном месте, в том числе и на уклонах.

Обычно стояночная тормозная система активируется при помощи рычага, находящегося между водительским креслом и соседним пассажирским сидением. Зачастую этот тормоз по-простому называется «ручником». Вместе с тем существует достаточное количество автомобилей, в которых стояночная система активируется ножной педалью, обычно это машины с автоматической коробкой передач, где данная педаль присутствует вместо педали сцепления.

Пневматическая тормозная система

Принцип действия пневматической тормозной системы состоит в том, что в процессе работы двигателя при отпущенной педали воздух накачивается в баллоны при помощи компрессора. Находящийся под давлением воздух из баллонов переходит к тормозному крану, а от него поступает в баллоны прицепа. Подача воздуха к прицепу заканчивается, когда водитель нажимает на педаль. После этого открывается тормозной кран и воздух поступает в пневмокамеры прицепа, что вызывает торможение. Под давлением воздуха на валик разжимного кулака происходит разведение колодок. Когда они перемещаются к барабану, происходит торможение при помощи силы трения. Если убрать ногу с педали, то при помощи возвратных пружин всё вернется в исходное положение.

Гидравлическая тормозная система

В тормозных системах с гидравлическим приводом передача энергии происходит под давлением жидкости. В данном случае принцип действия основан на несжимаемости жидкости, что позволяет передавать давление в необходимые места при замкнутом объеме.

К преимуществам таких тормозных систем можно отнести скорость реакции и высокий КПД, а также небольшую массу и удобство компоновки.

К недостатками гидравлических тормозных систем относятся потребность в наличии специальной жидкости с низкой температурой загустевания и высокой температурой кипения, высокая вероятность выхода из строя при разгерметизации оборудования и утечке жидкости, а также небольшой КПД при очень низких температурах.

Тормозная система АБС


Антиблокировочные тормозные системы предназначены для предотвращения блокировки колёс автомобиля в процессе торможения. Основным предназначением таких систем является обеспечение необходимой эффективности торможения с сохранением высокой степени управляемости и устойчивости транспортного средства.

Нынешние АБС представляют собой весьма сложные электронные тормозные системы, включающие в свой состав как противобуксовочные средства, так и системы помощи в экстренном положении и устройства для контроля устойчивости. Антиблокировочные системы в настоящее время установлены почти на всех легковых автомобилях и даже на мотоциклах.

Тормозная система полуприцепа и прицепа


Тормозные системы прицепа и полуприцепа включают в себя рабочие тормоза, стояночные тормоза и электромагнитный клапан, подающий сжатый воздух в тормозные камеры при активации вспомогательного тормоза.

В этом случае тормозные механизмы, имеющиеся на всех колёсах прицепа или полуприцепа похожи на аналогичные механизмы автомобилей и связаны со стояночным и рабочим тормозами.

Все механизмы действуют при помощи тормозных камер, которые устроены так же, как и тормозные камеры на передней оси легковых авто.

Техническое обслуживание тормозной системы


При обслуживании тормозной системы осуществляются работы по проверке её элементов, замене тормозной жидкости, регулировке педали тормоза и стояночных тормозов.

В первую очередь, при проверке тормозной системы обращают внимание на герметичность соединений привода . В случае обнаружения неисправности утечку воздуха или жидкости устраняют. Необходимо также проверить действие тормозной системы на ходу транспортного средства и разобраться с неисправностями в случае наличия таковых.

В случае с гидравлическим приводом при проверке герметичности его соединений о возникновении утечек тормозной жидкости судят по тому, насколько часто приходится добавлять жидкость в резервуар основного цилиндра.

При использовании пневматического привода об утечке воздуха можно догадаться по резкому уменьшению давления, даже при выключенном двигателе. Места утечки можно обнаружить по характерному звуку в местах соединения элементов тормозной системы.

Также необходимо проверить крепление компрессора, тормозные диски и прочие детали тормозной системы. При необходимости регулируется расстояние между барабаном и колодками.

Как проверить давление в тормозной системе?


Для проверки давления в тормозной системе используется прибор, называющийся тестером давления . С его помощь производятся измерения давления в трубопроводах тормозных систем транспортного средства, а также снимаются показания в его тормозном цилиндре.

В состав такого оборудования входят два манометра высокого давления и штуцеры для соединения с гидравликой тормозных систем. Тестер используется как на автомобилях с системой АБС, так и без нее.

Имеющиеся в наборе манометры нужны для того, чтобы одновременно получить показания давления тормозной системы передней и задней осей машины. Каждый из манометров комплектуется коническим штуцером, чтобы быстро сбрасывать давление и сливать жидкость из тормозной системы. Такой тестер давления может служить для диагностики как в автосервисе, так и в гараже.

Диагностика тормозной системы, или Как выявить неисправности?


Диагностика тормозной системы транспортного средства включает в себя выполнение набора диагностических тестов . В первую очередь, оценивается техническое состояние системы, которое определяется по длине тормозного пути, замедлению и времени срабатывания. В случае наличия существенной разницы полученных показателей по сравнению с нормативными определяются причины снижения эффективности тормозной системы, которые обычно заключаются в неисправности некоторых её комплектующих.

Для оценивания эффективности и состояния тормозной системы обычно используются роликовые или платформенные стенды. Среди них чаще встречаются стенды, применяющие силовые методы диагностики. С их помощью можно определить тормозную силу каждого из колёс при том усилии, которое получается при нажатии на педаль. Помимо этого принято измерять время, необходимое на срабатывание тормозного привода. Такие измерения позволяют проверить состояние прокладок и тормозных барабанов.

Одним из наиболее достоверных методов диагностирования тормозных систем является инерционный, который проводится на роликовых стендах посредством измерения тормозного пути каждого колеса. На этом же стенде можно измерить скорость срабатывания привода и наибольшее замедление по каждому колесу.

В процессе диагностики тормозной системы выявляются такие неисправности как низкая эффективность торможения, износ тормозных колодок, перегрев механизмов, заклинивание поршней в цилиндрах, потеря герметичности оборудования, неверная регулировка привода и многие другие.

Прокачка тормозной системы своими руками


Тормоза обычно прокачиваются после ремонта тормозной системы. Для выполнения работы без обращения к специалистам может пригодиться помощь напарника. Из оборудования понадобятся какая-нибудь ёмкость, шланг и гаечный ключ.

Процесс начинается с правого заднего колеса, затем прокачивается левое заднее колесо, а потом в таком же порядке идет прокачка передних колёс.

Для начала необходимо наполовину заполнить ёмкость тормозной жидкостью и поместить в нее резиновый шланг. Один его конец надо присоединить к штуцерам тормозного цилиндра, а второй должен быть расположен близко к дну используемой ёмкости.

Очистив штуцер от грязи и сняв резиновые колпачки можно надеть на него конец шланга. В этот момент напарнику следует нажать педаль тормоза, в результате чего в начнет выходить тормозная жидкость. Затем надо закрутить штуцер, а ассистент в это время качает до того, пока педаль не станет достаточно тугой. Качать следует приблизительно 15 раз, прежде чем открывать штуцер и производить слив жидкости. Процесс необходимо продолжать, пока все пузыри воздуха не выйдут из штуцера.

Данный алгоритм проводится с каждым из колес в указанном выше порядке. При этом необходимо следить за наличием достаточного объема тормозной жидкости.

Если после завершения процедуры педаль тормоза проваливается, причина может быть в неисправности тормозного цилиндра или потери герметичности соединительных шлангов. Обычно после прокачки педаль тормоза становится более упругой.

Замена тормозной системы своими руками и в мастерской


Замену тормозов рекомендуется проводить при помощи специалистов, особенно если речь идет о дорогих авто. Обычно установленная по умолчанию тормозная система заменяется в дальнейшем не целиком, а по частям, в соответствии с тем, какие её элементы были признаны неисправными в результате проведения диагностики.

Своими руками могут быть заменены, например, колодки или тормозные диски. Но порой даже для автомобилиста со стажем это непростая задача. Замену более сложных механизмов, входящих в состав тормозной системы, всё же лучше доверить специалистам.

Как можно заметить из прейскурантов многих автосервисов, замена колодок или дисков в среднем в два раза дешевле, чем замена более сложных деталей, например, тормозных цилиндров. В целом, цены достаточно демократичные, что не сравнится со стоимостью покраски авто. Замена любой из частей тормозной системы в мастерской обойдется в среднем несколько дешевле одной тысячи рублей . Цена зависит от количества и типа заменяемых комплектующих, а также модели транспортного средства.

Средние цены на стоимость и ремонт тормозной системы в России и странах СНГ

Стоимость целой тормозной системы может достигать нескольких десятков тысяч рублей и даже нескольких сотен тысяч, если речь идет о дорогих автомобилях.

Самыми дешевыми и легкозаменяемыми элементами в составе таких систем являются колодки, их можно найти по цене менее тысячи рублей.

Чуть дороже обойдутся тормозные диски – в среднем от одной до нескольких тысяч рублей.

Остальные детали, такие как суппорты и цилиндры обойдутся значительно дороже. Не стоит забывать, что указанные цены комплектующих актуальны для отечественных и недорогих зарубежных авто, в остальных случаях цена может расти пропорционально стоимости автомобиля.

Что касается ремонта тормозных системы, то средние цены в России без учета покупки комплектующих находятся на уровне тысячи рублей (на какую-то отдельную часть тормозной системы, а не на все сразу).

Причем под ремонтом обычно подразумевается регулировка имеющегося оборудования или установка нового, т.к. далеко не все элементы тормозных систем подлежат повторной эксплуатации после обнаружения неисправностей…

Устройство тормозов.

Для эффективного замедления и остановки любого транспортного средства, необходима специальная внешняя сила, препятствующая вращению колёс, и которая называется тормозной. Направление действия тормозной силы, всегда противоположно направлению движения транспортного средства, а максимальное действие тормозной силы, зависит от сцепления покрышки колеса с дорогой. Проще говоря, для замедления и остановки служит тормозная система, которая должна быть всегда в исправном состоянии, а для этого нужно знать её устройство, вовремя устранять неисправности и своевременно проводить обслуживание тормозной системы. Об этом мы и поговорим в этой статье.

Тормозная система любого автомобиля, служит не только для его замедления в движении и полной остановки, но ещё и для удержания его на месте во время стоянки. Все автомобили оборудуются на заводе рабочей (основной), запасной и стояночной тормозными системами.

Рабочая тормозная система обеспечивает замедление (снижение скорости) автомобиля и его полную остановку, и приводится в действие усилием от ноги водителя, давящей на тормозную педаль. Эффективность рабочей тормозной системы оценивается по длине тормозного пути или по скорости замедления.

Запасная тормозная система обеспечивает замедление и остановку машины, в том случае, если не сработает рабочая система тормозов. Запасная тормозная система менее эффективно замедляет и останавливает машину, чем рабочая система, но всё же позволяет избежать неприятностей, при отказе рабочей системы. На большинстве автомобилей (и на всех отечественных) отсутствует полностью автономная запасная система тормозов и её функции выполняет исправная часть от рабочей тормозной системы, а также стояночная система тормозов.

Стояночная тормозная система обеспечивает удержание остановленной машины на месте стоянки и она должна надёжно зафиксировать машину на уклоне до 25%.

Вся тормозная система состоит из механизмов, которые осуществляют торможение (замедление) вращающихся колёс машины и их привода и все тормозные механизмы мы подробно рассмотрим в этой статье. Различают два вида тормозов: менее эффективные и постепенно вымирающие барабанные тормоза, и более эффективные дисковые тормоза. В барабанных тормозах, сила трения создаётся на внутренней поверхности чугунного барабана (или алюминиевого барабана с чугунной вставкой), а в дисковых тормозах, сила трения создаётся на боковых поверхностях вращающегося чугунного или диска.


Рис. 1. 1 — колёсный тормозной цилиндр; 2 — тормозная колодка; 3 — неподвижный тормозной диск; 4 — тормозной барабан; 5 — опорные пальцы; 6 — стяжная пружина.

Барабанные тормоза . На большинстве автомобилей и некоторых мотоциклов, задние колёса до сих пор оснащены барабанными тормозами, поэтому рассмотрим их устройство. Колёсный тормозной механизм барабанных тормозов, состоит из двух тормозных колодок 2 (см. рисунок 1), которые установлены внутри тормозного барабана 4, который закреплён на ступице колеса и вращается вместе с ней.

Сами колодки крепятся на неподвижном диске 3, а низ колодок упирается на пальцы 5, а верх колодок стянут пружиной 6. К наружной поверхности колодок приклёпаны или приклеены специальным клеем фрикционные накладки, которые в момент торможения трутся по внутренней поверхности барабана и этим останавливают колесо.

Между верхними концами колодок установлен гидравлический цилиндр 1, поршни которого при нажатии водителем на педаль и поступлении тормозной жидкости в гидроцилиндр, с обеих сторон расходятся и давят на концы колодок (разводят их), прижимая их в момент торможения к поверхности барабана. И соответственно трение колодок о внутреннюю поверхность барабана и вызывает замедление (торможение) колеса машины или мотоцикла.

После прекращения давления на педаль и уменьшения давления тормозной жидкости на поршни гидроцилиндра, пружина 6 возвращает тормозные колодки в начальное положение, и соответственно торможение колеса прекращается. И между колодкой и внутренней поверхностью барабана появляется определённый зазор (чтобы колесо свободно вращалось).

Привод тормозов и его устройство.

Привод тормозов — это устройство для передачи усилия от ноги водителя к тормозным исполнительным механизмам и возможность управлять ими во время торможения. Бывают механический и гидравлический привод. Механический привод используется на автомобилях для стояночной системы тормозов и состоит из тяг, тросов и рычагов, соединяющих рукоять ручника с тормозным механизмом задних колёс. Так же механический привод до сих пор используется как рабочий в барабанных тормозах некоторых мотоциклов прошлых лет выпуска, и на большинстве наших отечественных мотоциклов.


Рис. 2. а — положение при нажатой тормозной педали; 6 — положение при отпущенной педали; 1 — толкатель; 2 — поршень; 3 — главный тормозной цилиндр; 4 — манжета поршня; 5 — выпускной клапан; 6 — колёсный тормозной цилиндр; 7 — поршень колёсного цилиндра; 8 — тормозная колодка; 9 — тормозной барабан колеса; 10 — стяжная пружина колодок; 11 — обратный клапан; 12 — возвратная пружина; 13 — резервуар.

Гидравлический привод более эффективен, так как усилие от тормозной педали передаётся с помощью тормозной жидкости, способной развить огромное давление. Гидравлический привод тормозов состоит из таких деталей: педаль с осью и толкателем 1 (см. рисунок 2), главный тормозной цилиндр 3 который создаёт давление жидкости в системе привода тормозов и он имеет резервуар (бачок) 13, в котором хранится тормозная жидкость (подробнее о главном тормозном цилиндре, его неисправностях и ремонте я написал ).

Так же привод состоит из колёсных тормозных цилиндров 6, которые передают давление тормозной жидкости на тормозные колодки 8, и всё это соединено с помощью трубопроводов и шлангов, рассчитанных на высокое давление. В системе так же имеется вакуумный усилитель тормозов, который мы рассмотрим подробно чуть ниже. Так же на многих автомобилях имеется регулятор давления в приводе задних колёс.

Принцип работы тормозной системы .

Когда водитель нажимает на тормозную педаль (см. рисунок 2,а), то толкатель 1 давит и двигает поршень 2 главного тормозного цилиндра, и от этого повышается давление в цилиндре, и открывается выпускной клапан 5, и тормозная жидкость поступает к рабочим колесным тормозным цилиндрам 6. В колёсном тормозном цилиндре 6 тоже повышается давление жидкости и от этого поршни 7 начинают расходиться и давить на тормозные колодки 8, прижимая их к внутренней поверхности тормозного барабана 9, и от этого трения колодок о барабан, он останавливается и соответственно останавливается колесо машины.

Когда водитель прекращает давить на тормозную педаль, она под действием специальной пружины отходит назад в исходное положение вместе с толкателем 1 (см. рисунок 2,б) и возвратная пружина 12 возвращает поршень влево, давление в цилиндрах и шлангах падает, и пружины 10 давят с помощью колодок 8 на поршни 7 колёсных цилиндров, и этим вызывают движение тормозной жидкости в обратном направлении.

Выпускной клапан 5 закрывается, и открывается обратный клапан 11, и тормозная жидкость возвращается в главный цилиндр. Но следует учесть, что обратный клапан закрывается только тогда, когда в системе остаётся избыточное давление, и это обеспечивает готовность тормозной системы к следующему торможению, и к тому же препятствует попаданию в систему воздуха.

На большинстве машин, гидравлический привод рабочей системы тормозов раздельный, то есть он действует от педали водителя раздельно на тормозные механизмы задних и передних колёс, или действует отдельно на заднее правое и переднее левое колесо и отдельно на заднее левое и переднее правое колесо машины. Это осуществляется применением главного тормозного цилиндра с двумя поршнями и применением двойного резервуара для тормозной жидкости. И в случае отказа одной из ветвей гидравлического привода, тормозная система всё же обеспечит торможение и остановку машины второй отдельной ветвью, хотя торможение в таком случае будет не таким эффективным, но всё равно позволит избежать неприятности столкновения.

Рабочая тормозная система.

Рис. 3. Тормозной механизм переднего колеса отечественной машины.
А — положение уплотнительного кольца при торможении; Б — положение уплотнительного кольца при растормаживании; 1 — тормозной диск; 2 — тормозная колодка; 3 — фрикционная накладка; 4 — тормозные цилиндры; 5 — колпачок клапана; 6 — штуцер подвода тормозной жидкости; 7 — уплотнительное кольцо поршня; 8 — пыльник (грязезащитный чехол); 9 — поршень; 10 — палец; 11 — шплинт; 12 — плоская пружина; 13 — суппорт; 14 — защитный кожух; 15 — ступица колеса; 16 — кронштейн суппорта; 17 — клапан выпуска воздуха.

На большинстве автомобилей рабочая тормозная система передних колёс имеет дисковый тормозной механизм. Он состоит из тормозного диска 1(см. рисунок 3), который крепится к ступице 15 колеса и суппорта 13. Внутри установлены два противоположно стоящих цилиндра 4, которые фиксируются в суппорте с помощью специальных фиксаторов. В каждом из цилиндров помещается поршень 9, который уплотнён резиновой манжетой 7, вставленной в кольцевую проточку цилиндра. А для защиты от пыли и грязи, цилиндр закрыт с наружи пыльником 8.

Сами поршни упираются (давят) на тормозные колодки 2, на которые наклеены фрикционные накладки 3. На внешней стороне корпуса цилиндра (внешнего цилиндра) вкручен конусный клапан 17, который служит для удаления воздуха из системы (при прокачке). В овальные отверстия ушек тормозных колодок вставляются пальцы 10, и каждый из пальцев установлен так же в отверстия приливов внешнего и внутреннего тормозных цилиндров. Эти пальцы ограничивают перемещение колодок в радиальном направлении.

А для устранения вибрации при движении машины, под головки пальцев установлены распорные пружины, и к тому же на тормозные колодки установлены фигурные пружины 12, которые прижимают колодки к пальцам. Эти же пружины 12 держат колодки в определённом положении, чтобы устранить их ненужное трение о тормозной диск, когда колесо свободно вращается. А чтобы пальцы 10 не смещались в сторону внутреннего цилиндра, они фиксируются шплинтом 11.

В момент торможения, от давления тормозной жидкости, создаваемого в главном тормозном цилиндре, поршни 9, преодолевая упругость уплотнительных колец 7 (состояние А на рисунке) выхотдят из цилиндров и давят сбольшой силой на тормозные колодки 2, прижимая их к тормозному диску 1.

При отпускании тормозной педали, когда давление в системе падает, поршни 9 возвращаются в исходное положение (состояние Б на рисунке) за счёт упругой деформации резиновых колец 7 (обычно 0,1 мм). И таким образом, по мере износа фрикционных накладок, необходимый зазор между фрикционной накладкой и поверхностью тормозного диска, всегда поддерживается автоматически.

Многопоршневые суппорты.


Рис. 4. 1 — тормозной диск; 2, 5 — шланги; 3 — поворотный рычаг; 4 — замковая пластина; 6 — стойка передней подвески; 7- грязезащитный щит; 8 — клапаны выпуска воздуха из цилиндров малого диаметра; 9 — шпилька-шплинт; 10 — тормозная колодка; 11, 12 — половины суппорта; 13 — манжета поршня; 14 — резиновые уплотнительные кольца; 15 — малый поршень; 16 — большой поршень; 17 — уплотнительные кольца канала; 18 — фрикционные накладки; 19 — каналы, сообщающие цилиндры между собой; 20 — клапан выпуска воздуха из цилиндров большого диаметра.

На некоторых автомобилях и более современных мотоциклах, в отличие от вышеописанного тормозного механизма, в суппорте может быть два и более поршней и такой суппорт состоит из двух половин 11 и 12 (см. рисунок 4). В цилиндрах такого суппорта может быть по два больших 16 и два малых 15 поршня (может быть и более четырёх поршней и они могут быть одинакового диаметра), которые уплотняются эластичными резиновыми манжетами 14. В суппорте просверлены каналы 19, которые сообщают между собой каждую пару цилиндров.

Когда водитель нажимает на педаль тормоза, то по шлангам 5 и 2 (может быть и только один шланг) давление тормозной жидкости передаётся на поршни 16 и 15. А когда педаль тормоза отпускает воитель, то давление жидкости уменьшается и поршни под действием силы упругости манжет 14, возвращаются в исходное положение (отходят от тормозных колодок на 0,1 — 0,15 мм, и это значение зависит от упругости резины манжет).

На суппорте показанном на рисунке 4, для удаления воздуха из системы, предусмотрены три клапана — два из них (8) предназначены для выпуска воздуха из малых цилиндров, и один (20) предназначен для удаления воздуха, при прокачке, из цилиндров большего диаметра.

Плавающий суппорт.


Рис. 5. 1 — суппорт; 2 — клапан выпуска воздуха; 3 — защитный колпачок; 4 — гибкий шланг; 5 — тормозной цилиндр; 6 — болт; 7 — стопорная шайба; 8 — тормозной диск; 9 — тормозные колодки с накладками; 10 — направляющая колодка; 11 — кожух тормозного диска; 12 — защитный чехол направляющего пальца; 13 — направляющий палец; А — смотровое отверстие; Б — паз для тормозных колодок.

На большинстве иномарок и на наших переднеприводных ВАЗах (2108-09) механизм передних тормозов имеет «плавающий» (подвижный) суппорт 1 (см.рисунок 5), и это эффективно позволяет сжимать тормозные колодки 9 с помощью всего одного поршня, в цилиндре 5. А тормозные колодки устанавливаются в направляющей 10, которая закреплена на поворотном колёсном кулаке. Сам суппорт крепится (на оси — пальце) к фланцу колёсного цилиндра 5 и он имеет паз Б для сжатия колодок и смотровое квадратное отверстие А, с помощью которого визуально определяют износ накладок тормозных колодок.

Для обеспечения нормального «плавания» суппорта, и колёсного цилиндра,относительно направляющей 10, суппорт и цилиндр соединены с направляющей не жёстко, а с помощью направляющих пальцев 13. Сами пальцы крепятся болтами 6 к фланцу колёсного цилиндра. На пальцах 13 и направляющей 10 имеются кольцевые проточки, на которых фиксируется резиновый пыльник 12, защищающий гладкую поверхность пальцев от грязи и влаги.

Тормозной диск закрывается с внутренней стороны защитным кожухом 11. У большинства машин нормалная толщина диска 12 мм, а предельно допустимая 10,8 (это для отечественных переднеприводных вазов, а для иномарок это значение может немного отличаться). В цилиндре 5 установлен полый поршень, так же уплотняющийся резиновой манжетой, и возврат поршня в исходное состояние аналогичен вышеописанным суппортам. И в этом цилиндре естественно тоже имеется клапан выпуска возуха 2 и резьбовое отверстие для вкручивания тормозного шланга 4.

Вакуумный усилитель тормозов.


Рис.6. а — торможение; 6 — на педаль не нажато; в — нажатие на педаль приостановлено; г — растормаживание; 1 — главный тормозной цилиндр; 2 — шток; 3 — вакуумный клапан; 4 — возвратная пружина; 5 — корпус клапана; 6 — диафрагма; 7 — корпус усилителя; 8 — крышка; 9 — буфер штока; 10 — упорная пластина поршня; 11 — поршень; 12 — клапан усилителя; 13 — пружина клапана; 14 — возвратная пружина клапана; 15 — воздушный фильтр; 16 — толкатель; 17 — оттяжная пружина; 18 — наконечник выключателя сигнала торможения; 19 — вилка толкателя; 20 — педаль; 21 — колпак; 22 — манжета; 23 — уплотнитель; 24 — регулировочный болт.

Об вакуумном усилителе тормозов я написал отдельную статью , но и в этой статье будет сказано не мало.

Вакуумный усилитель служит для уменьшения усилия на педаль тормоза, облегчая чувствительность педали. Он установлен на перегородке, разделяющей моторный отсек и салон машины и крепится задним фланцем к педальному кронштейну. Вакуумный усилитель состоит из корпуса 7 (см. рисунок 6) корпуса 5 клапана с диафрагмой 6 и крышки 8. При помощи диафрагмы, корпус усилителя делится на две полости: атмосферную Д и вакуумную А.

Корпус клапана 5 выполняет функцию поршня, который передвигается в корпусе 7. Он отлит из пластмассы и в нём имеется сквозное отверстие, из которого выходят каналы С и В. Канал С соединяет центральное отверстие с атмосферной полостью, а канал В соединяет центральное отверстие с вакуумной полостью. В корпус клапана 5 входит толкатель 16, который вторым концом соединён с педалью тормоза 20.

Передний конец толкателя крепится к поршню 11, а продольное перемещение поршня относительно корпуса клапана, ограничивается упорной пластиной 10. Пластина крепится в корпусе клапана неподвижно и заходит в кольцевую проточку поршня, ширина которой шире толщины пластины.

Между горловиной крышки 8 и корпусом клапана 5 имеется зазор, который уплотнён резиновой манжетой 22. А поверхность корпуса клапана должна быть смазана пластичной смазкой (например Литолом). Эта поверхность должна быть чистой и от пыли она защищена резиновым гофрированным пыльником 21. На толкателе вакуумного усилителя установлены пористый воздушный фильтр 15, служащий для отчистки поступающего в усилитель воздуха, и установлены опорные чашечки пружин, а так же пружины 14 и 13 и резиновый клапан 12.

В передней части вакуумного усилителя, в месте входа штока 2, установлена уплотнительная втулка 23. А на переднем торце штока вкручен регулировочный винт 24, который упирается в момент торможения в гнездо поршня главного тормозного цилиндра 1. А задним торцом шток 2 опирается в резиновый буфер 9, установленный между поршнем 11 и штоком 2.

Возвратная пружина 4 передвигает корпус клапана 5 в правое крайнее положение, когда отсутствует вакуум или механическое давление. С помощью резинового шланга вакуумная полость А соединяется с внутренней полостью впускного патрубка двигателя через штуцер, в котором имеется обратный клапан 3, который открывается при перепаде давления между полостью А и впускным коллектором (или патрубком) двигателя.

Вакуумный усилитель работает только при заведённом двигателе, когда во впускном коллекторе создаётся разряжение, передающееся в полость А и это заключается в следующем: при свободной (не нажатой) тормозной педали (см.рисунок 6,б) вакуумная А полость С и В сообщена с атмосферой полостью Д, с помощью кольцевой щели между передним торцом клапана 12 и расположенным перед ним круглым выступом корпуса клапана 5.

Атмосферная полость Д в этот момент (при отжатой педали) отделена от атмосферы торцом резинового клапана 12, который прижат к заднему торцу поршня 11 с помощью усилия пружины 13. А так как при этом с двух сторон диафрагмы имеется вакуум, то диафрагма и корпус клапана с помощью пружины 4 прижаты к крышке 8 корпуса.

В момент торможения, толкатель 16 совместно с поршнем 11 и прижатой к нему подвижной частью резинового клапана 12 передвигается вперёд до того момента, пока не исчезнет кольцевая щель и торец клапана 12 не углубится в кольцевой выступ корпуса клапана 5. В этот момент вакуумная полость А отделится от атмосферной полости Д. При дальнейшем перемещении педали 20 и соответственно толкателя 16 сдвинет поршень 11 от клапана 12 (см. рисунок 6,а) и это приведёт к образованию щели между ними, и из полости Е через фильтр 15 поступит воздух в атмосферную полость Д. Создастся разность давлений и от этого корпус клапана и диафрагма начнут двигаться вперёд и головка регулировочного винта 24 на торце штока, упрётся в поршень главного тормозного цилиндра и создаст избыточное давление в гидросистеме привода тормозов.

Когда перемещение педали тормоза прекращается (см. рисунок 6, в) от действия разряжения в полости А корпус клапана 5 и прижатый к нему торец резинового клапана 12 будут передвигаться вперёд, пока клапан 12 не упрётся в задний торец поршня 11. От этого сообщения полостей Д и Е уже не будет и передвижение корпуса клапана 5 остановится. И установится равновесие, при котором тормозная жидкость в системе будет находиться под определённым постоянным давлением.

При резком экстренном торможении, поршень 11 упрётся через буфер 9 в шток 2, и начнёт механическое воздействие на поршень главного тормозного цилиндра, и кроме этого поршень 11, отодвигаясь от клапана 12, обеспечит его упор в кольцевой выступ корпуса 5. Это приведёт к разобщению полостей Д и А, и сообщению полости Д с атмосферой, и это увеличивает давление, которое создаётся в гидравлическом приводе тормозов.

При полном отпускании водителем тормозной педали, подвижные детали привода тормозов возвращаются назад в исходное положение (см. рисунок 6,г) от действия обратной пружины 17 педали, и от действия возвратной пружины 4 вакуумного усилителя и действия возвратных пружин главного тормозного цилиндра. При полном отпускании педали поршень 11 отжимает клапан 12 от кольцевого выступа корпуса клапана 5 и через образовавшуюся щель, воздух по каналам В и С начинает переходить из полости Д в полость А и тут же отсасываться с помощью разрежения во впускном коллекторе двигателя. А сообщение полости Е с полостью Д прекращается, так как торец клапана 12 с помощью пружины 13 прижимается к поршню 11.

Когда двигатель машины не работает, или когда вакуумный усилитель неисправен, торможение машины возможно, но при этом ход тормозной педали увеличивается и эффективность тормозов снижается. В таком случае привод поршней главного цилиндра происходит только механически от толкателя 16 тормозной педали через поршень 11, буфер 9 и шток 2.

Регулятор давления .

Регулятор давления тормозной жидкости служит для того, чтобы в момент полного торможения машины, при максимальном подъёме задней части кузова, не происходило проскальзывания задних колёс машины, относительно поверхности дороги (для исключения заноса машины). Как это происходит мы рассмотрим чуть ниже.

Действие регулятора давления происходит от воздействия рычага, который крепится к кузову машины. А длинное плечо рычага привода регулятора соединено шарнирно через специальную тягу с балкой , а короткое плечо рычага заходит в проточку нижней части поршня регулятора. И это плечо рычага передаёт на поршень регулятора все колебательные движения заднего моста.


Рис. 7. а — поршень занимает среднее положение; б — поршень в крайнем нижнем положении; в — поршень в крайнем верхнем положении; 1 — трубопровод от главного тормозного цилиндра; 2 — корпус; 3 — пробка 4 — поршень; 5 — втулка; 6 — резиновый уплотнитель; 7 — плавающая тарелка; 8 — пружина; 9 — резиновое кольцо; 10 — короткое плечо рычага привода регулятора; 11 — трубопровод к тройнику привода задних тормозов.

Регулятор давления состоит из корпуса 2 (см рисунок 7) с двумя резьбовыми отверстиями для трубопроводов и подвода по ним тормозной жидкости. Снизу корпуса отверстие соединено трубопроводом 1 с главным тормозным цилиндром, а в верхнее отверстие вкручен трубопровод 11, который подводит тормозную жидкость к суппортам задних колёс. Поршень 4 делит внутреннюю часть корпуса регулятора на две полости: нижнюю и верхнюю. А выход штока поршня из нижней полости уплотнён резиновой манжетой 9.

Пружина 8 упирается в плавающую тарелку 7, и через неё в выступы на поршне и постоянно стремиться отжать поршень до упора его в пробку 3. Эластичный уплотнитель 6 плавающего типа, но перемещение его вверх ограничивается втулкой 5. При нерабочем верхнем положении поршня (см. рисунок 7,в), поршень отжат пружиной 8 до упора в пробку 3. При этом тормозная жидкость из одной полости регулятора в другую просачивается через зазоры между стержнем поршня 4 , уплотнителем 6, тарелкой 7, втулкой 5 и головкой поршня.

Когда начинается торможение машины, то нагрузка на подвеску передка машины увеличивается, а на заднюю подвеску нагрузка уменьшается (кузов клюёт носом). И задняя часть кузова машины начинает подниматься вверх. В этот момент короткое плечо 10 рычага (см. рисунок 7,а) привода регулятора начинает опускаться вниз. От этого, а также от давления тормозной жидкости, поршень 4 начинает отпускаться вниз, преодолевая сопротивление пружины 8. От этого проходное сечение для тормозной жидкости уменьшается, и уменьшается давление в тормозном приводе задних колёс.

А в момент полного торможения движущейся машины, задняя часть кузова максимально поднимается и от этого снижается сцепление задних колёс с поверхностью дороги, и это может привести к заносу автомобиля. Чтобы избежать этого, поршень 4 регулятора опускается ещё ниже вслед за опускающимся рычагом 10 (чем выше задок кузова, тем ниже поршень регулятора) и опускается так же под действием давления жидкости на верх поршня, и он соприкасается с уплотнителем 6 и перекрывает проход жидкости к колёсным цилиндрам задних колёс. Этим и предотвращается блокировка задних колёс и занос автомобиля.

Такой же эффект происходит при разном положении кузова относительно балки заднего моста (в зависимости от веса груза в машине). И при приближении кузова к заднему мосту, торсион закручивается и сильно давит на поршень, который уже будет закрываться при более высоком давлении тормозной жидкости в приводе задних тормозов, и от этого интенсивность торможения повышается (чем сильнее загружена машина и кузов ближе к балке заднего моста, тем эффективнее задние тормоза).

При изъятии груза из машины и разгрузке заднего моста, торсион раскрутится и поршень уже будет закрываться при более низком давлении тормозной жидкости, и от этого эффективность торможения задних колёс несколько уменьшится, чтобы исключить их блокировку.

Неисправности тормозной системы.

Признаками неисправности тормозной системы являются: слабое действие тормозов, увеличенный свободный ход педали, увеличенный полный ход тормозной педали, неравное действие колёсных механизмов одной оси, заклинивание колёс при торможении, или неполное их растормаживание, сильный нагрев тормозных барабанов или дисков, при отпущенной педали подтормаживание одного из колёс, увеличение усилия к тормозной педали, увод или занос машины при торможении, скрип или вибрация тормозов, самостоятельное торможение при работающем моторе, утечка тормозной жидкости.

Слабое действие тормозов.

Оно обнаруживается по увеличению тормозного пути, который не соответствует правилам дорожного движения. Причинами ослабления тормозов могут быть утечка тормозной жидкости, которая сопровождается попаданием воздуха в систему. Эффективность торможения может снизится из-за попадания на диск, барабан или колодки смазочных материалов, через неплотности изношенных сальников ступиц колёс и их полуосей. Также может ослабить действие тормозов попадание тормозной жидкости на накладки и диски.

Ослабление тормозов может произойти и от увеличившегося зазора между тормозной накладкой и диском или барабаном (из-за их сильного износа), а так же из-за заклинивания поршней в колёсных цилиндрах, или из-за перегрева тормозных механизмов. Чтобы устранить вышеперечисленные неисправности, естественно нужно заменить изношенные детали, удалить смазку промыв и обезжирив накладки и диски (барабаны), устранить утечку жидкости подтягиванием соединений и заменой уплотнительных деталей (манжет), довести до нормы уровень тормозной жидкости в бачке (в системе) и в конце ремонта прокачать тормозную систему, удалив из неё воздух.

Если эффективность торможения восстанавливается только после двух или трёхкратного нажатия на тормозную педаль, то это значит, что в систему попал воздух и его нужно удалить, с помощью прокачки. Как это сделать я уже писал, и желающие могут почитать подробно об . Там же вы найдёте и как заменить тормозную жидкость свежей.

Увеличенный рабочий ход тормозной педали.

Увеличенный свободный ход может быть из-за: пониженного уровня тормозной жидкости в бачке, из-за потери герметичности тормозной системы, попадания воздуха в систему, увеличения зазора между фрикционными накладками и поверхностью диска или барабана, от большого износа этих накладок, от недопустимого износа самого диска или барабана, от повреждения или износа резиновых уплотнителей в главном и рабочих тормозных цилиндрах.

Чтобы устранить эту неисправность, проверяют и доливают до уровня тормозную жидкость (к отметке МАКС). Следует учесть, что постепенное снижение уровня жидкости в бачке (если точно отсутствует её утечка) свидетельствует об постепенном износе фрикционных накладок. И когда жидкость постепенно понизится до отметки МИН, то в большинстве случаев это свидетельствует о критическом износе накладок. На многих современных иномарках, это выявляется с помощью специального датчика и загорания лампы критического износа накладок на панели приборов.

Если обнаружится утечка (нарушение герметичности системы), то естественно нужно сразу устранить её. Ну а если тормозная жидкость заметно убывает из бачка, а мест утечки при тщательном осмотре всей системы вы не обнаружили, то в большинстве случаев утечка происходит в камере вакуумного усилителя (из-за нарушения уплотнения , со стороны усилителя) и тормозная жидкость всасывается в двигатель через впускной коллектор.

Чтобы определить это, нужно отсоединить от коллектора вакуумный шланг, приходящий к усилителю (с усилителя тоже снять шланг) и вынуть из крышки усилителя вакуумный клапан и осмотреть его и внутренность шланга. При наличии тормозной жидкости в шланге и на клапане, указанный выше дефект подтверждается. И для его устранения, придётся разбирать главный тормозной цилиндр и заменять изношенные манжеты (уплотнения).

При увеличении зазора между фрикционными накладками и поверхностью диска или барабана, нарушено автоматическое восстановление зазора (как я описывал выше в статье). Это бывает из-за заедания поршней в колёсных цилиндрах. Можно попробовать восстановить их нормальную работу, если на сухом асфальте при скорости 30 — 50 км в час, резко нажать на педаль тормоза 4 — 6 раз, а затем повторить тоже самое, двигаясь задним ходом. Если это не поможет восстановит подвижность поршней в колёсных цилиндрах, то их следует их снять, разобрать, промыть и заменить изношенные детали.

На большинстве легковых автомобилей, при исправных механизмах задних колёс с барабанными тормозами, между барабаном и фрикционной накладкой должен быть зазор 0,10 — 0,15 мм, и на некоторых автомобилях, имеющих смотровое окно с наружной стороны ступицы тормозного барабана, зазор можно проверить с помощью щупа. А минимальная толщина изношенных накладок должна быть не менее 2 мм (точное значение можно найти в мануале именно своего автомобиля). Если толщина накладок меньше, то они требуют замены. А чтобы снять прикипевший от коррозии тормозной барабан, можно воспользоваться съёмником, описанным вот в .

Нормальный свободный ход.

У тормозной педали должен быть свободный ход и при исправной тормозной системе и заглушенном двигателе у большинства автомобилей он должен составлять 3 — 5 мм. Свободный ход регулируется перемещением наконечника 18 (см рисунок 7) включателя стопсигнала (при открученной контргайке). Если наконечник будет сильно близко к тормозной педали, то она не будет до конца возвращаться в исходное положение и между штоком 2 и поршнем главного тормозного цилиндра 1 не будет зазора, и это будет причиной не полного растормаживания колёс машины.

Если нет возможности восстановления свободного хода педали с помощью вкручивания наконечника 18, то можно будет немного вкрутить регулировочный болт 24 штока 2 вакуумного усилителя.

Полный ход тормозной педали получается из свободного хода педали и её рабочего хода. Свободный ход педали должен быть лёгким, а в начале рабочего хода, когда начинаются растягиваться пружины и начинается подача тормозной жидкости в колёсные цилиндры, усилие на педаль должно резко возрастать.

Неравномерное действие тормозных механизмов одной оси.

От неравномерного действия тормозов может произойти занос машины при резком торможении. Это бывает когда замасливаются фрикционные накладки колёс одной стороны машины, утечки жидкости или заедания поршня в одном из колёсных цилиндров, или из-за неисправности регулятора давления гидропривода задних колёс. Чтобы выявить неисправность, нужно внимательно осмотреть все магистрали, промыть и обезжирить замасленные детали, или заменить детали колёсных цилиндров, если они заклинены, или заедают в цилиндре, а так же устранить утечки жидкости если они есть. Если причина в гидроприводе, то заменить его (или изношенные детали в нём).

Неполное растормаживание колёс.

Оно может быть из-за отсутствия свободного хода тормозной педали, засорения нагнетательных отверстий в главном тормозном цилиндре, или из-за заедания поршней в главном или колёсном цилиндре, из-за обрыва или ослабления пружин, стягивающих колодки, из-за отклеивания фрикционной накладки (редко, но бывает), а так же из-за ослабления крепления суппорта или неправильной регулировки ручника (стояночного тормоза). Так же эта неисправность может быть из-за заедания корпуса клапана в вакуумном усилителе, или из-за защемления уплотнительной прокладки крышки усилителя или защитного чехла, или из-за нарушения нормальной длины выступания регулировочного болта, относительно плоскости главного тормозного цилиндра.

Нагревание тормозного барабана.

При этой неисправности нужно снять тормозной барабан и проверить целостность стяжных пружин колодок, а так же проверить, не заклинены ли поршни в колёсных цилиндрах. Негодные детали заменить новыми. Нагреваться барабаны задних колёс могут при неправильной регулировке ручника (перетяжке тросов). Нагреваться тормозные диски передних колёс могут из-за ослабления крепления суппортов или заклинивания поршней в колёсных цилиндрах.

Увеличение усилия на тормозную педаль.

Чтобы эффективно затормозить, нужно приложить большое усилие к тормозной педали. Это может быть из-за засорения воздушного фильтра вакуумного усилителя, или из-за заедания корпуса клапана из-за разбухания диафрагмы, повреждения или соскакивания вакуумного шланга с коллектора или с усилителя, разбухания манжет цилиндров (от старости или не качественной тормозной жидкости или попадания в неё бензина или масла).

Устранить эти неисправности можно если промыть фильтр, закрепить вакуумный шланг, и если это не поможет, следует разобрать усилитель и заменить разбухшие детали. После этого нужно промыть всю тормозную систему изопропиловым спиртом или нормальной тормозной жидкостью, заполнить ей систему и прокачать тормоза.

Занос машины в сторону.

Эта неисправность может быть из-за заклинивания поршня одного из колёсных цилиндров, смятия одного из трубопроводов или его закупорка грязью, от замасливания тормозного диска или фрикционной накладки одного из колёс оси, а так же из-за неисправности регулятора давления или его неправильной регулировки, из-за нарушения передних колёс, ну или из-за разности давления воздуха в шинах передних колёс или задних. Чтобы устранить неисправность, естественно нужно заменить повреждённые детали, или отмыть и обезжирить замасленные детали и устранить утечки, от которых детали замаслились, и довести давление в шинах до нормы и одинакового значения, в обоих колёсах одной оси.

Скрип или вибрация тормозов.

Эти неисправности возможны из-за ослабления стяжной пружины колодок, из-за овальности тормозных барабанов или кривизны поведённого тормозного диска, или из-за неравномерного его износа, замасливания фрикционных накладок, критического износа фрикционных накладок. Неисправность устраняется элементарно — заменой изношенных или кривых деталей. Кривизну диска или барабана легко проверить с помощью индикаторной стойки и , и об этой проверке я уже не раз писал.

Самопроизвольное подтормаживание при работающем двигателе.

Эта интересная неисправность может быть из-за подсоса воздуха в вакуумном усилителе (между корпусом клапана и защитным колпаком, от его разрушения. А так же может быть из-за перекоса или ненадёжной фиксации уплотнителя крышки усилителя, или из-за его недостаточной смазки. Устраняется неисправность разборкой усилителя, и смазкой Литолом работающие поверхности уплотнителя, или заменой порванного колпака.

Техническое обслуживание тормозной системы.

Перед выездом желательно всегда проверять отсутствие течей тормозной жидкости и её уровень в бачке, ведь малейшее нарушение герметичности может привести к серьёзным неприятностям. А в начале поездки всегда проверять действие тормозной педали и её нормальный свободный и рабочий ход. Полное эффективное торможение должно происходить при однократном нажиме на педаль и примерно при половине её хода. В конце хода педали, водитель должен ощутить значительное её сопротивление. Если полное торможение наступает только в конце хода педали, значит это говорит о больших зазорах в механизмах тормозов. Ну а если сопротивление педали слабое и увеличивается после двух — трёх нажатий, значит в систему попал воздух.

Растормаживание колёс должно быть быстрым и полным, и это проверяется свободным накатом автомобиля, после прекращения действия на педаль. Это можно проверить и на месте с помощью помощника, покатывая машину вперёд-назад и периодически нажимая на тормозную педаль.

При промывке деталей тормозных механизмов нельзя пользоваться бензином или растворителем, а только изопропиловым спиртом или чистой тормозной жидкостью. При замене манжет и уплотнителей не применять острых инструментов, а пользоваться деревянным или пластиковым стеком (применяется для резки пластилина).

Через 10 — 15 тысяч км проверять состояние и толщину фрикционных накладок (менее 2 мм заменять новыми). В этот же период желательно проверить штангелем толщину тормозных дисков. Проверить состояние тормозных шлангов и при появлении малейших трещин заменить их новыми.

Через 25 — 30 тысяч км проверить состояние регулятора давления жидкости в гидравлическом приводе. Для проверки машину загоняют на эстакаду или поднимают подъёмником и сняв чехол регулятора и удалив грязь и смазку резко нажимают на тормозную педаль. При нормальной работе исправного регулятора, выступающая часть поршня выдвинется из корпуса и закрутит торсионный рычаг. Далее закладывают свежую смазку ДТ-1 и надевают защитный чехол. Ну а если перемещения поршня регулятора не будет, то регулятор ремонтируют или заменяют новым.

Чтобы проверить вакуумный усилитель, нужно раз пять нажать на тормозную педаль и остановить её нажатие на половине её хода и запустить двигатель машины. Если вакуумный усилитель исправен, то педаль тормоза переместится вперёд сама собой (без нажатия). Если этого не случится, то нужно тщательно проверить герметичность тормозной системы вашей машины; удачи всем на дорогах!

А знаете, в самолете тоже есть тормоза! Правда, работают они не в воздухе, а на взлетной полосе, во время остановки самолета после посадки. Ну а в автомобиле – «сам Бог велел», применить тормозную систему.

Итак, тормозная система предназначена для изменения скорости движения автомобиля, по команде водителя, или электронной . Второе назначение тормозной системы - удержание автомобиля в неподвижном состоянии относительно дорожного покрытия, на время стоянки. Различают три вида тормозных систем:

  1. рабочая
  2. стояночная , в народе именуемая ручник.
  3. запасная , или система экстренного торможения.

Рабочая система , это основной узел управления и безопасности в автомобиле, от надежности которого, зависят жизни пассажиров.

Ручник, или стояночный тормоз приводится в действие, при длительной стоянке автомобиля, для исключения самопроизвольного движения, особенно на участках дороги имеющих уклон. Может использоваться и как система экстренного торможения. А у любителей драйва, устройством блокировки задних колес (для переднего привода) для выполнения резкого разворота, так называемый «полицейский разворот».

Запасная система торможения стала применяться сравнительно недавно и служит для экстренного торможения во время отказа рабочей системы. Устанавливается, как правило, на автомобилях с электрическим ручником. Так как ручник во время движения не сможет включиться, то простым движением рычага экстренного торможения блокируются колеса и автомобиль остановится. Запасная система может быть реализована как отдельный узел, или как часть рабочей системы.

Тормозная система автомобиля основана на физическом явлении - трении. Именно из-за трения между неподвижной деталью и вращающейся, достигается эффект торможения, а вот как это происходит, поговорим ниже.

Во время торможения, трение возникает между фрикционными накладками тормозных колодок из мягкого материала и вращающимся тормозным диском или тормозным барабаном. Из-за этой особенности тормоза подразделяются на и . Но в современном автомобиле, как правило, применяется их симбиоз – передние тормоза дисковые, задние барабанные, но возможны варианты, все зависит от конструкторов.

По способу привода в действие, тормозные системы подразделяются на:

  • Гидравлические
  • Пневматические
  • Механические
  • Электромеханические
  • Электропневматические


Рассмотрим работу гидравлической рабочей тормозной системы, которая состоит из:

  1. Педали привода тормозной системы
  2. Главного гидравлического цилиндра
  3. Рабочих цилиндров (для каждого колеса)
  4. Трубок, шлангов высокого давления
  5. Тормозных колодок
  6. Бачка
  7. Тормозной жидкости

При нажатии на педаль тормоза приводится в действие шток главного цилиндра. Шток толкает поршенек, который нагнетает давление рабочей жидкости в трубках системы, далее в рабочем цилиндре. Поршни рабочих цилиндров нажимают на тормозные колодки (вариант дисковых тормозов). В барабанных тормозах в рабочем цилиндре находятся два поршенька, которые заставляют колодки разойтись по сторонам и прижаться к внутренней стенке барабана.

Надо отметить, что давление в системе тормозом достигает 20 атмосфер, поэтому для уменьшения усилия водителя при нажатии на педаль тормоза, в систему вводится вакуумный усилитель тормозов , работу которого рассмотрим отдельно.

Для улучшения характеристик тормозной системы, а так же ее надежности применяются еще несколько усовершенствований. Это:

  • ABS (антиблокировочная система)
  • ASR (антипробуксовочная система)
  • ESP (система курсовой устойчивости)
  • BAS (усилитель экстренного торможения)
  • EBD (система распределения тормоза)
  • EDS (блокировка дифференциала)

Механическая тормозная система применяется в работе стояночного тормоза и экстренного торможения. Обычно ручник совмещается с гидравлической системой, но если на задних колесах применяются дисковые тормоза, то стояночный тормоз реализован отдельно. В некоторых автомобилях стояночный тормоз блокирует не колеса, а барабан тормозной, который находится на приводе .

Принцип работы очень прост, приводя в действие рычаг ручника, натягивается трос, который соединен с тормозными колодками. Колодки расходятся и блокируют барабан или диск изнутри.

Пневматические тормоза схожи с гидравлическими, но вместо тормозной жидкости в системе сжатый воздух. Для этого в систему введены ресиверы для его накопления.

В электромеханических тормозах трос приводит в действие электродвигатель.

Министерство образования и науки РФ

Волгоградский Государственный Технический Университет

(ВолгГТУ)

Кафедра Автомобильный транспорт

Основы безопасного управления автомобилем

«Тормозная система автомобиля. Устройство и работа»

Выполнил:

студент гр. АЭ-513

Солдатов П.В.

Проверил:

ст. пр. Еронтаев В.В.

Волгоград 2011


Основные типы тормозных механизмов

Тормозные жидкости

Пневмопривод тормозного управления

Возможные неисправности тормозной системы

Список источников


Классификация и устройство тормозных систем

Классификация.

Эксплуатация любого автомобиля допускается в том случае, если он имеет исправную тормозную систему. Тормозная система необходима на автомобиле для снижения его скорости, остановки и удерживания на месте.

Тормозная сила возникает между колесом и дорогой по направлению, препятствующему вращению колеса. Максимальное значение тормозной силы на колесе зависит от возможностей механизма, создающего силу торможения, от нагрузки, приходящейся на колесо, и от коэффициента сцепления с дорогой. При равенстве всех условий, определяющих силу торможения, эффективность тормозной системы будет зависеть в первую очередь от особенностей конструкции механизмов, производящих торможение автомобиля.

На современных автомобилях в целях обеспечения безопасности движения устанавливают несколько тормозных систем, выполняющих различное назначение. По этому признаку тормозные системы подразделяют на:

Рабочую,

Запасную,

Стояночную,

Вспомогательную.

Рабочая тормозная система используется во всех режимах движения автомобиля для снижения его скорости до полной остановки. Она приводится в действие усилием ноги водителя, прилагаемым к педали ножного тормоза. Эффективность действия рабочей тормозной системы самая большая по сравнению с другими типами тормозных систем.

Запасная тормозная система предназначена для остановки автомобиля в случае отказа рабочей тормозной системы. Она оказывает меньшее тормозящее действие на автомобиль, чем рабочая система. Функции запасной системы может выполнять чаще всего исправная часть рабочей тормозной системы или полностью стояночная система.

Управляется стояночная тормозная система рукой водителя через рычаг ручного тормоза.

Устройство тормозной системы

В общем виде тормозная система состоит из тормозных механизмов и их привода. Тормозные механизмы при работе системы препятствуют вращению колес, в результате чего между колесами и дорогой возникает тормозная сила, останавливающая автомобиль. Тормозные механизмы (см. рис. 1) 2 размещаются непосредственно на передних и задних колесах автомобиля.

Тормозной привод передает усилие от ноги водителя на тормозные механизмы. Он состоит из главного тормозного цилиндра 5 с педалью 4 тормоза, гидровакуумного усилителя 1 и соединяющих их трубопроводов 3, заполненных жидкостью.

Работает тормозная система следующим образом. При нажатии на педаль тормоза поршень главного цилиндра давит на жидкость, которая перетекает к колесным тормозным механизмам. Поскольку жидкость практически не сжимается, то, перетекая по трубкам к тормозным механизмам, она передает усилие нажатия. Тормозные механизмы преобразуют это усилие в сопротивление вращению колес, и наступает торможение. Если педаль тормоза отпустить, жидкость перетечет обратно к главному тормозному цилиндру и колеса растормаживаются. Гидровакуумный усилитель 1 облегчает управление тормозной системой, так как создает дополнительное усилие, передаваемое на тормозные механизмы колес.

Рис. 1- Схема тормозной системы

автомобиль барабанный тормоз

Для повышения надежности тормозных систем автомобилей в приводе применяют различные устройства, позволяющие сохранить ее работоспособность при частичном отказе тормозной системы. Так, на автомобиле ГАЗ-24 «Волга» для этого применяют разделитель, который автоматически отключает при торможении неисправную часть тормозного привода в момент возникновения отказа.

Рассмотренный принцип действия тормозной системы позволяет представить взаимодействие основных элементов тормозной системы, имеющей гидравлический привод. Если в приводе тормозной системы используется сжатый воздух, то такой привод называется пневматическим, если жесткие тяги или металлические тросы - механическим. Действие указанных приводов имеет существенные отличия от гидропривода и рассматривается ниже.


Основные типы колесных тормозных механизмов

В тормозных системах автомобилей наиболее распространены фрикционные тормозные механизмы, принцип действия которых основан на силах трения вращающихся деталей о невращающиеся. По форме вращающейся детали колесные тормозные механизмы делят на барабанные и дисковые.

Барабанный тормозной механизм с гидравлическим приводом (рис. 2 а) состоит из двух колодок 2 с фрикционными накладками, установленных на опорном диске 3. Нижние концы колодок закреплены шарнирно на опорах 5, а верхние упираются через стальные сухари в поршни разжимного колесного цилиндра 1. Стяжная пружина 6 прижимает колодки к поршням цилиндра 1, обеспечивая зазор между колодками и тормозным барабаном 4 в нерабочем положении тормоза. При поступлении жидкости из привода в колесный цилиндр 1 его поршни расходятся и раздвигают колодки до соприкосновения с тормозным барабаном, который вращается вместе со ступицей колеса. Возникающая сила трения колодок о барабан вызывает затормаживание колеса. После прекращения давления жидкости на поршни колесного цилиндра стяжная пружина 11 возвращает колодки в исходное положение и торможение прекращается.

Рассмотренная конструкция барабанного тормоза способствует неравномерному износу передней и задней по ходу движения колодок. Это происходит в результате того, что при движении вперед в момент торможения передняя колодка работает против вращения колеса и прижимается к барабану с большей силой, чем задняя. Поэтому, чтобы уравнять износ передней и задней колодок, длину передней накладки делают больше, чем задней, или рекомендуют менять местами колодки через определенный срок.


Рис. 2 - Колесный барабанный тормозной механизм

В другой конструкции барабанного механизма опоры колодок располагают на противоположных сторонах тормозного диска и привод каждой колодки выполняют от отдельного гидроцилиндра. Этим достигается больший тормозной момент и равномерность изнашивания колодок на каждом колесе, оборудованном по такой схеме.

Барабанный тормозной механизм с пневматическим приводом (рис. 2 б) отличается от механизма с гидравлическим приводом конструкцией разжимного устройства колодок. В нем используется для разведения колодок разжимный кулак 7, приводимый в движение рычагом 8, посаженным на ось разжимного кулака. Рычаг отклоняется усилием, возникающем в пневматической тормозной камере 9, которая работает от давления сжатого воздуха. Возврат колодок в исходное положение при оттормаживании происходит под действием стяжной пружины 11. Нижние концы колодок закреплены на эксцентриковых пальцах 10, которые обеспечивают регулировку зазора между нижними частями колодок и барабаном. Верхние части колодок подводятся к барабану при регулировке зазора с помощью червячного механизма.

Рис. 3 - Колесный дисковый тормозной механизм:

а - в сборе, б - разрез по оси колесных тормозных цилиндров;

1 - тормозной диск, 2 - шланги, 3 - поворотный рычаг, 4 - стойка передней подвески,5 - грязезащитный диск, 6 - клапан выпуска воздуха, 7 - шпилька крепления колодок, 8, 9 –половины скобы,10 - тормозная колодка,11 - канал подвода жидкости, 12 - поршень малый, 13 - поршень большой

Колесный дисковый тормозной механизм с гидроприводом состоит из тормозного диска 1, закрепленного на ступице колеса. Тормозной диск вращается между половинками 8 и 9 скобы, прикрепленной к стойке 4 передней подвески. В каждой половине скобы выточены колесные цилиндры с большим 13 и малым 12 поршнями.

При нажатии на тормозную педаль жидкость из главного тормозного цилиндра перетекает по шлангам 2 в полости колесных цилиндров и передает давление на поршни, которые, перемещаясь с двух сторон, прижимают тормозные колодки 10 к диску 1, благодаря чему и происходит торможение.

Отпускание педали вызывает падение давления жидкости в приводе, поршни 13 и 12 под действием упругости уплотнительных манжет и осевого биения диска отходят от него, и торможение прекращается.

Преимущества барабанных тормозов:

Низкая стоимость, простота производства;

Обладают эффектом механического самоусиления. Благодаря тому, что нижние части колодок связаны друг с другом, трение о барабан передней колодки усиливает прижатие к нему задней колодки. Этот эффект способствует многократному увеличению тормозного усилия, передаваемого водителем, и быстро повышает тормозящее действие при усилении давления на педаль.

Преимущества дисковых тормозов:

При повышении температуры характеристики дисковых тормозов довольно стабильны, тогда как у барабанных снижается эффективность.

Температурная стойкость дисков выше, в частности, из-за того, что они лучше охлаждаются;

Более высокая эффективность торможения позволяет уменьшить тормозной путь;

Меньшие вес и размеры;

Повышается чувствительность тормозов;

время срабатывания уменьшается

Изношенные колодки просто заменить, на барабанных приходится предпринимать усилия на подгонку колодок чтобы одеть барабаны;

Около 70% кинетической энергии автомобиля гасится передними тормозами, задние дисковые тормоза позволяют снизить нагрузку на передние диски;

Температурные расширения не влияют на качество прилегания тормозных поверхностей.

Гидравлический привод тормозов

Тормозную систему с гидравлическим приводом тормозов применяют на всех легковых и некоторых грузовых автомобилях. Она выполняет одновременно функции рабочей, запасной и стояночной систем. Чтобы повысить надежность тормозной системы на легковых автомобилях ВАЗ, АЗЛК, ЗАЗ применяют двухконтурный гидравлический привод, который состоит из двух независимых приводов, действующих от одного главного тормозного цилиндра на тормозные механизмы отдельно передних и задних колес. На автомобиле ГАЗ-24 с этой же целью применяют в приводе тормозов разделитель, позволяющий использовать исправную часть тормозной системы в качестве запасной, если в другой части тормозной системы произошло нарушение герметичности.

Главный тормозной цилиндр (рис.4) приводится в действие от тормозной педали, установленной на кронштейне кузова. Корпус 2 главного цилиндра выполнен совместно с резервуаром для тормозной жидкости. Внутри цилиндра находится алюминиевый поршень 10 с уплотнительным резиновым кольцом. Поршень может перемещаться под действием толкателя 1, соединенного шарнирно с педалью.

Рис. 4 - Главный тормозной цилиндр

Днище поршня упирается через стальную шайбу в уплотнительную манжету 9, прижимаемую пружиной 8. Она же прижимает к гнезду впускной клапан 7, внутри которого расположен нагнетательный клапан 6.

Внутренняя полость цилиндра сообщается с резервуаром компенсационным 4 и перепускным 3 отверстиями. В крышке резервуара сделано резьбовое отверстие для заливки жидкости, закрываемое пробкой 5. При нажатии на тормозную педаль под действием толкателя 1 поршень с манжетой перемещается и закрывает отверстие 4, вследствие чего давление жидкости в цилиндре увеличивается, открывается нагнетательный клапан 6 и жидкость поступает к тормозным механизмам. Если отпустить педаль, то давление жидкости в приводе снижается, и она перетекает обратно в цилиндр. При этом избыток жидкости через компенсационное отверстие 4 возвращается в резервуар. В то же время пружина 8, действуя на клапан 7, поддерживает в системе привода небольшое избыточное давление после полного отпускания педали.

При резком отпускании педали поршень 10 отходит в крайнее положение быстрее, чем перемещается манжета 9, и жидкость начинает заполнять освобождающуюся полость цилиндра. Одновременно в полости возникает разрежение. Чтобы устранить его, в днище поршня имеются отверстия, сообщающие рабочую полость цилиндра с внутренней полостью поршня. Через них жидкость перетекает в зону разрежения, чем и устраняется нежелательный подсос воздуха в цилиндр. При дальнейшем перемещении манжеты жидкость вытесняется во внутреннюю полость поршня и далее через перепускное отверстие 3 в резервуар.

Колесный тормозной цилиндр тормозного механизма заднего колеса состоит из чугунного корпуса, внутри которого помещены два алюминиевых поршня с уплотнительными резиновыми манжетами. В торцовую поверхность поршней для уменьшения изнашивания вставлены стальные сухари. Цилиндр с обеих сторон закрыт защитными резиновыми чехлами. Жидкость в полость цилиндра поступает через отверстие, в которое ввернут присоединительный штуцер. Для выпуска воздуха из полости цилиндра используется клапан прокачки, закрытый снаружи резиновым колпачком. В цилиндре имеется устройство для регулировки зазора между колодками и барабаном, представляющее собой пружинное упорное кольцо, вставленное с натягом в корпус цилиндра.

Во время торможения внутри цилиндра создается давление жидкости, под действием которого поршень перемещается и отжимает тормозную колодку. По мере изнашивания фрикционной накладки ход поршня при торможении становится больше и наступает момент, когда он своим буртиком передвигает упорное кольцо, преодолевая усилие его посадки. При обратном перемещении колодки под действием стяжной пружины упорное кольцо остается в новом положении, так как усилия стяжной пружины недостаточно, чтобы сдвинуть его назад. Таким образом, достигается компенсация износа накладок и автоматически устанавливается минимальный зазор между колодками и барабаном.

Колесный цилиндр тормозного механизма переднего колеса действует только на одну колодку, поэтому отличается от колесного цилиндра заднего колеса внешними размерами и количеством поршней: в цилиндре заднего колеса размещены два поршня, в цилиндре переднего - один. Все остальные детали цилиндров, за исключением корпуса, одинаковы по конструкции.

Тормозные жидкости

Тормозная жидкость является одной из наиболее важных эксплутационных жидкостей в автомобиле, от качества которой зависит надежность работы тормозной системы и безопасность. Ее основная функция – передача энергии от главного тормозного к колесным цилиндрам, которые прижимают тормозные накладки к тормозным дискам или барабанам. Тормозные жидкости состоят из основы (ее доля 93–98%) и различных добавок, присадок, иногда красителей (остальные 7–2%). По своему составу они делятся на минеральные (касторовые), гликолевые и силиконовые.

Минеральные (касторовые) – представляющие собой различные смеси касторового масла и спирта, например бутилового (БСК) или амилового спирта (АСК) имеют сравнительно невысокие вязкостно-температурные свойства, так как застывают при температуре -30...-40 градусов и закипают при температуре +115 градусов.

Такие жидкости обладают хорошими смазывающими и защитными свойствами, негигроскопичны, не агрессивны к лакокрасочным покрытиям.

Но они не соответствуют международным стандартам, имеют низкую температуру кипения (их нельзя применять на машинах с дисковыми тормозами) и становятся слишком вязкими уже при минус20°С.

Минеральные жидкости нельзя смешивать с жидкостями на другой основе, так как возможно набухание резиновых манжет, узлов, гидропривода и образование сгустков касторового масла.

Гликолевые тормозные жидкости, состоящие из спиртогликколевой смеси, многофункциональных присадок и небольшого количества воды. У них высокая температура кипения, хорошие вязкостные и удовлетворительные смазывающие свойства.

Основным недостатком гликолевых жидкостей является гигроскопичность (склонность поглощать воду из атмосферы). Чем больше воды растворено в тормозной жидкости, тем ниже ее температура кипения, больше вязкость при низких температурах, хуже смазываемость деталей и сильнее коррозия металлов.

Отечественная тормозная жидкость «Нева» имеет температуру кипения не ниже +195 градусов и окрашена в светло-желтый цвет.

Гидротормозные жидкости «Томь» и «Роса» по свойствам и цвету аналогичны "Неве", но имеют более высокие температуры кипения. У жидкости «Томь» эта температура составляет +207 градусов, а у жидкости «Роса» +260 градусов. С учетом гигроскопичности при содержании влаги 3.5% фактические температуры кипения для этих жидккостей равны соответственно +151 и +193 градусов, что превосходит аналогичный показатель (+145) для жидкости «Нева».

В России нет единого государственного или отраслевого стандарта, регламентирующего показатели качества тормозных жидкостей. Все отечественные производители ТЖ работают по собственным ТУ, ориентируясь на нормы, принятые в США и странах Западной Европы. (стандарты SAE J1703 (SAE – Общество автомобильных инженеров (США), ISO (DIN) 4925 (ISO (DIN) – Международная организация по стандартизациии FMVSS №116 (FMVSS – Федеральный стандарт США по безопасности автомобилей).

Наиболее популярными на данный момет являются отечественные и импортные гликолевые жидкости, классифицируемые по температуре кипения и по вязкости в соответствии с нормами DOT – Department of Transportation (Министерство транспорта, США).

Различают температуру кипения «сухой» жидкости (не содержащей воды) и увлажненной (с содержанием воды 3,5%). Вязкость определяют при двух значениях температуры: +100°C и –40°C.

DOT 3 – для относительно тихоходных автомобилей с барабанными тормозами или дисковыми передними тормозами;

DOT 4 – на современных быстроходных автомобилях с преимущественно диcковыми тормозами на всех колесах;

DOT 5.1 – на дорожных спортивных автомобилях, где тепловые нагрузки на тормоза значительно выше.

Силиконовые изготавливаются на основе кремний-органических полимерных продуктов. Их вязкость мало зависит от температуры, они инертны к различным материалам, работоспособны в диапазоне температур от –100 до +350°С и не адсорбируют влагу. Но их применение ограничивают недостаточные смазывающие свойства.

Основанные на силиконе жидкости несовместимы с другими

Силиконовые жидкости класса DOT 5 следует отличать от полигликолевых DOT 5.1, так как сходство наименований может привести к путанице.

Для этого на упакове дополнительно обозначают:

ДОТ 5 – SBBF («silicon based brake fluids» - тормозная жидкость, основанная на силиконе).

DOT 5.1 – NSBBF («non silicon based brake fluids» - тормозная жидкость, не основанная на силиконе).

Жидкости класса DOT 5 на обычных транспортных средствах практически не применяются.

Кроме основных показателей – по температуре кипения и величине вязкости, тормозные жидкости должны отвечать другим требованиям.

Воздействие на резиновые детали. Между цилиндрами и поршнями гидропривода тормозов установлены резиновые манжеты. Герметичность этих соединений повышается, если под воздействием тормозной жидкости резина увеличивается в объеме (для импортных материалов допускается расширение не более 10%). В процессе работы уплотнения не должны чрезмерно разбухать, давать усадку, терять эластичность и прочность.

Воздействие на металлы. Узлы гидропривода тормозов изготавливаются из различных металлов, соединенных между собой, что создает условия для развития электрохимической коррозии. Для ее предотвращения в тормозные жидкости добавляют ингибиторы коррозии, защищающие детали из стали, чугуна, алюминия, латуни и меди.

Смазывающие свойства. Смазывающие свойства тормозной жидкости определяют износ рабочих поверхностей тормозных цилиндров, поршней и манжетных уплотнений.

Термостабильность. Тормозные жидкости в интервале температур от, минус 40 до, плюс 100°C должны сохранять исходные свойства (в определенных пределах), противостоять окислению, расслаиванию, а также образованию осадков и отложений.

Гигроскопичность. Склонность тормозных жидкостей на полигликолевой основе поглощать воду из окружающей среды. Чем больше воды растворено в ТЖ, тем ниже ее температура кипения, ТЖ раньше закипает, сильнее густеет при низких температурах, хуже смазывает детали, а металлы в ней корродируют быстрее.

На современных автомобилях, в силу целого ряда преимуществ, применяются в основном гликолевые тормозные жидкости. К сожалению, за год они могут «впитать» до 2-3% влаги и их нужно периодически заменять, не дожидаясь, когда состояние приблизится к опасному пределу. Периодичность замены указывается в инструкции по эксплуатации автомобиля и обычно составляет от 1 до 3 лет или 30-40 тыс.км.

Гидровакуумный усилитель тормозов

Работа гидровакуумного усилителя основана на использовании энергии разрежения во впускном трубопроводе двигателя, благодаря чему создается дополнительное давление жидкости в системе гидропривода тормозов. Это позволяет при сравнительно небольших усилиях на тормозной педали получать значительные усилия в тормозных механизмах колес, оборудованных такой системой привода. Гидровакуумные усилители применяют на легковых автомобилях, а также на грузовых.

Основными частями гидровакуумного усилителя (рис. 5) являются цилиндр 9 с клапаном управления и камера 15. Гидроусилитель соединен соответствующими трубопроводами с главным тормозным цилиндром 13, впускным трубопроводом 14 двигателя и разделителем 12 тормозов. Камера 15 состоит за штампованного корпуса и крышки, между которыми зажата диафрагма 16. Она жестко соединена со штоком 10 поршня 11 и отжимается конической пружиной 1 в исходное положение после растормаживания. В поршне 11 имеется запорный шариковый клапан. Сверху на корпусе цилиндра расположен корпус 6 клапана 7 управления. Поршень 8 жестко соединен с клапаном 7, закрепленном на диафрагме 4. Внутри корпуса 6 размещен вакуумный клапан 3 и связанный с ним с помощью штока атмосферный клапан 2. Полости I и II клапана сообщаются соответственно с полостями III и IV камеры, которая через запорный клапан соединена с впускным трубопроводом двигателя.

При отпущенной педали и работающем двигателе в полостях камеры существует разрежение и под действием пружины 1 все детали гидроцилиндра находятся в левом крайнем положении.

В момент нажатия на педаль тормоза жидкость от главного тормозного цилиндра 13 перетекает через шариковый клапан в поршне 11 усилителя к тормозным механизмам колес. По мере повышения давления в системе поршень 8 клапана управления поднимается, закрывая вакуумный клапан 3 и открывая атмосферный клапан 2.


Рис. 5 - Гидровакуумный усилитель автомобиля ГАЗ-24 «Волга»

При этом атмосферный воздух начинает проходить через фильтр 5 в полость IV, уменьшая в ней разрежение. Поскольку в полости III разрежение продолжает сохраняться, разность давлений перемещает диафрагму 16 сжимая пружину 1 и через шток 10 действуя на поршень 11. При этом на поршень усилителя начинают действовать две силы: давление жидкости от главного тормозного цилиндра и давление со стороны диафрагмы, которые усиливают эффект торможения.

При отпускании педали давление жидкости на клапан управления снижается, его диафрагма 4 прогибается вниз и открывает вакуумный клапан 3, сообщая полости 111 и IV. Давление в полости IV падает, и все подвижные детали камеры и цилиндра перемещаются влево в исходное положение, происходит растормаживание. Если гидроусилитель неисправен, привод будет действовать только от педали главного тормозного цилиндра с меньшей эффективностью.


Пневматический привод тормозов

Принцип действия пневматического привода тормозов.

Тормозную систему с пневматическим приводом применяют на большегрузных грузовых автомобилях и больших автобусах. Тормозное усилие в пневматическом приводе создается воздухом, поэтому при торможении водитель прикладывает к тормозной педали небольшое усилие, управляющее только подачей воздуха к тормозным механизмам. По сравнению с гидравлическим приводом пневмопривод имеет менее жесткие требования к герметичности всей системы, так как небольшая утечка воздуха при работе двигателя восполняется компрессором. Однако сложность конструкции приборов пневмопривода, их габаритные размеры и масса значительно выше, чем у гидропривода. Особенно усложняются системы пневмопривода на автомобилях, имеющих двухконтурную или многоконтурную схемы. Такие пневмоприводы применяют, например, на автомобилях МАЗ, ЛАЗ, КамАЗ и ЗИЛ-130 (с 1984 г.).

Сущность двухконтурной схемы пневмопривода автомобилей МАЗ состоит в том, что все приборы пневмопривода соединены в две независимые ветви для передних и задних колес. На автобусах ЛАЗ также применены два контура привода, действующие от одной педали через два тормозных крана на колесные механизмы передних и задних колес раздельно. Этим повышается надежность пневмопривода и безопасность движения в случае выхода из строя одного контура.

Наиболее простую схему имеет пневмопривод тормозов на автомобиле ЗИЛ-130 (рис.6) выпуска до 1984 г.. В систему привода входят компрессор 1, манометр 2, баллоны 3 для сжатого воздуха, задние тормозные камеры 4, соединительная головка 5 для соединения с тормозной системой прицепа, разобщительный кран 6, тормозной кран 8, соединительные трубопроводы 7 и передние тормозные камеры 9.

При работе двигателя воздух, поступающий в компрессор через воздушный фильтр, сжимается и направляется в баллоны, где находится под давлением. Давление воздуха устанавливается регулятором давления, который находится в компрессоре и обеспечивает его работу вхолостую при достижении заданного уровня давления. Если водитель производит торможение, нажимая на тормозную педаль, то этим он воздействует на тормозной кран, открывающий поступление воздуха из баллонов в тормозные камеры колесных тормозов.

Для наблюдения за работой пневматического тормозного привода и своевременной сигнализации о его состоянии и возникающих неисправностях в кабине на щитке приборов имеются пять сигнальных лампочек, двухстрелочный манометр, показывающий давление сжатого воздуха в ресиверах двух контуров (I и II) пневматического привода рабочей тормозной системы, и зуммер, сигнализирующий об аварийном падении давления сжатого воздуха в ресиверах любого контура тормозного привода.

Рис. 6 - Схема пневмопривода тормозов автомобиля ЗИЛ-130

Тормозные камеры поворачивают разжимные кулаки колодок, которые разводятся и нажимают на тормозные барабаны колес, производя торможение.

При отпускании педали тормозной кран открывает выход сжатого воздуха из тормозных камер в атмосферу, в результате чего стяжные пружины отжимают колодки от барабанов, разжимный кулак поворачивается в обратную сторону и происходит растормаживание. Манометр, установленный в кабине, позволяет водителю следить за давлением воздуха в системе пневматического привода.

На автомобилях ЗИЛ-130 начиная с 1984 г. введены изменения в конструкцию тормозной системы, которые удовлетворяют современным требованиям безопасности движения. С этой целью в пневматическом тормозном приводе использованы приборы и аппараты тормозной системы автомобилей КамАЗ.

Привод обеспечивает работу тормозной системы автомобиля в качестве рабочего стояночного и запасного тормозов, а также выполняет аварийное растормаживание стояночного тормоза, управление тормозными механизмами колес прицепа и питание других пневматических систем автомобиля.

Устройство и работа стояночной, вспомогательной и запасной тормозных систем

Вспомогательная тормозная система

Вспомогательная тормозная система используется в виде тормоза-замедлителя на автомобилях большой грузоподъемности (МАЗ, КрАЗ, КамАЗ) с целью снижения нагрузки при длительном торможении на рабочую тормозную систему, например на длинном спуске в горной или холмистой местности.


Рис. 7 - Механизм вспомогательной тормозной системы: 1 - корпус; 2 - рычаг поворотный; 3 - заслонка; 4 - вал

Механизм вспомогательной тормозной системы (рис. 293). В приемных трубах глушителя установлены корпус 1 и заслонка 3, закрепленная на валу 4. На валу заслонки закреплен также поворотный рычаг 2, соединенный со штоком пневмоцилиндра. Рычаг 2 и связанная с ним заслонка 3 имеют два положения. Внутренняя полость корпуса сферическая. При выключении вспомогательной тормозной системы заслонка 3 устанавливается вдоль потока отработавших газов, а при включении - перпендикулярно потоку, создавая определенное противодавление в выпускных коллекторах. Одновременно прекращается подача топлива. Двигатель начинает работать в режиме компрессора.

Стояночная тормозная система служит для удерживания остановленного автомобиля на месте, чтобы исключить его самопроизвольное трогание (например, на уклоне).

Управляется стояночная тормозная система рукой водителя через рычаг ручного тормоза. При отказе одного контура рабочей тормозной системы стояночная тормозная система может использоваться как аварийная совместно с исправным контуром рабочей тормозной системы.

Устройство стояночной тормозной системы на примере автомобиля БЕЛАЗ 75483.

Стояночная тормозная система состоит из тормозного механизма колодочного типа с тормозным цилиндром и крана управления. В системе установлен датчик, включающий сигнальную лампу на панели приборов в кабине. Тормозной механизм стояночной тормозной системы установлен на валу главной передачи заднего моста и блокирует только ведущие колеса. Пневматический привод стояночной тормозной системы запитан от ресивера. При повороте рукоятки крана в положение "расторможено" воздух из ресивера и кран управления поступает в штоковую полость цилиндра. Поршень цилиндра перемещается, сжимая пружины, поворачивает регулировочный рычаг вместе с разжимным кулаком и разблокирует тормозной механизм. Давление воздуха в полости цилиндра, а следовательно, и перемещение поршня зависит от угла поворота рукоятки крана управления, что позволяет регулировать эффективность стояночной тормозной системы при использовании ее в качестве аварийной при торможении движущегося самосвала.

Тормозной механизм стояночной тормозной системы (рис.8) колодочного типа с двумя внутренними колодками, установлен на валу главной передачи заднего моста и блокирует только ведущие колеса.


Рис. 8 Тормозной механизм стояночной тормозной системы:

1 - главная передача; 2 - тормозная колодка; 3 - щиток; 4 - ведущий вал главной передачи; 5 - палец крепления пружины; 6 - цилиндр тормозного механизма; 7 - кронштейн; 8 - разжимной кулак; 9 - верхняя стяжная пружина; 10 - суппорт; 11 - ось колодок; 12 - нижняя стяжная пружина; 13 - барабан тормозного механизма; 14, 20 - упорные кольца; 15, 21, 25 - шайбы; 16 - болт; 17 - фланец; 18 - пружинные шайбы; 19 - болт крепления барабана и карданного вала; 22 - уплотнительное кольцо; 23 - масленка; 24 - регулировочный рычаг;

Две тормозные колодки 2 с приклепанными тормозными накладками опираются на общую ось 11. Стяжной пружиной 9 колодки прижаты к разжимному кулаку 8, а пружиной 12 - к оси 11. На валу разжимного кулака на шлицах закреплен регулировочный рычаг 24, который соединен со штоком цилиндра тормозного механизма.При затормаживании самосвала сжатый воздух из цилиндра тормозного механизма через кран управления выходит в атмосферу, и усилием пружин тормозного цилиндра регулировочный рычаг поворачивается вместе с разжимным кулаком, который прижимает колодки к барабану, закрепленному на ведущей шестерне главной передачи заднего моста. Тормозной механизм блокирует вращающиеся элементы трансмиссии с картером передачи.

Перечень возможных неисправностей тормозной системы

Признаки неисправности Причина неисправности Способ устранения неисправности
Педаль тормоза проваливается и пружинит Воздух в тормозной системе Удалить воздух из тормозной системы автомобиля
В расширительном бачке мало тормозной жидкости Долить тормозную жидкость в расширительный бачок. Удалить воздух из тормозной системы
Образование пузырьков пара. Проявляется при большой нагрузке на тормоза Заменить тормозную жидкость. Удалить воздух из тормозной системы автомобиля.
Повышенный свободный ход педали тормоза Частичный или полный износ тормозных колодок, тяжелый ход установочного механизма Обеспечить легкость хода установочного механизма или заменить тормозные колодки автомобиля
Повреждение манжеты в главном тормозном или в одном из колесных цилиндров Заменить поврежденные детали
Отказ одного тормозного контура Проверить утечки тормозной жидкости в тормозных контурах
Повышенные люфты подшипников колес Заменить подшипники колес
Боковое биение или выход из допуска по толщине тормозного диска Проверить биение и толщину. Диск проточить или заменить
Тормозной суппорт не параллелен тормозному диску Проверить поверхности тормозного суппорта
Попадание воздуха в тормозную систему Удалить воздух из тормозной системы
Не функционирует устройство установки тормозных колодок (для барабанных тормозов) Обеспечить легкость хода установочного механизма
Снижение эффекта торможения, жесткая педаль тормоза Утечки в трубопроводе Подтянуть крепления или заменить трубки
Повреждение манжет в колесных или в главном тормозном цилиндрах Заменить манжеты, внутренние детали главного тормозного цилиндра или сам цилиндр.
При торможении автомобиль уводит в одну сторону Неправильное давление в шинах Проверить давление в шинах и откорректировать
Односторонний износ шин Заменить изношенные шины
Заменить накладки тормозных колодок
Различный материал накладок тормозных колодок на одной оси Заменить тормозные колодки. Установить; тормозные колодки, пригодные для данной модели автомобиля
Повреждение поверхностей накладок тормозных колодок Заменить накладки
Загрязнение шахт тормозных суппортов Очистить посадочные и направляющие шахты колодок в тормозном суппорте
Коррозия цилиндра суппорта Заменить суппорт
Заменить тормозные колодки (на обоих колесах)
Загрязнение или повреждение направляющих пальцев суппортов Заменить направляющие пальцы
Нарушена геометрия заднего моста Произвести обмер ходовой части
Дефект амортизаторов Проверить и, если требуется, заменить амортизаторы
Колодки суппорта изношены или затвердели Заменить тормозные колодки суппорта
Приржавели поршни в колесных тормозных цилиндрах (для барабанных тормозов) Заменить колесные тормозные цилиндры
Разогрев тормозов в движении
Проверить зазор
Засорено дроссельное отверстие в специальном клапане избыточного давления в главном тормозном цилиндре Очистить цилиндр, заменить внутренние детали. Заменить тормозную жидкость.
Разбухание резиновых деталей из-за использования тормозной жидкости не рекомендованного сорта Отремонтировать или заменить главный тормозной цилиндр. Заменить тормозную жидкость.
Сломана распорная пружина Заменить распорную пружину
Ослабли возвратные пружины тормозных колодок (для барабанных тормозов) Заменить возвратные пружины
Не отпущен рычаг ручного тормоза Отрегулировать ручной тормоз или заменить трос ручного тормоза
Подтормаживание колес Засорено компенсационное отверстие в главном тормозном цилиндре Очистить цилиндр, заменить внутренние детали
Мал зазор между тягой и поршнем главного тормозного цилиндра Проверить зазор
Стук тормозов Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Частичная коррозия тормозных дисков Тщательно отшлифовать тормозные диски
Боковое биение тормозных дисков Проточить или заменить тормозные диски
Овальность тормозного барабана
Накладки тормозных колодок не отделяются от тормозного диска, колесо тяжело проворачивается рукой Коррозия цилиндра тормозного суппорта Отремонтировать или заменить тормозной суппорт
Неравномерный износ тормозных колодок Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Тяжелый ход поршней Проверить установку поршней
Негерметична тормозная система Проверить тормозную систему
Повреждение пыльников Заменить пыльники
Разбухание резинового кольца поршня Отремонтировать суппорт или колесный цилиндр
Клинообразный износ тормозных колодок
Коррозия в тормозном суппорте Очистить тормозной суппорт
Неправильная работа поршня Проверить установку поршней
Скрип тормозов Зачастую зависит от климатических воздействий (влажность) Ничего не делать, если скрип появляется после долгой стоянки автомобиля в условиях повышенной влажности, а затем пропадает после первых торможений
Несоответствующие тормозные колодки Заменить тормозные колодки. Установить тормозные колодки, рекомендованные для данной модели автомобиля
Тормозной диск не параллелен тормозному суппорту Проверить плоскости установки тормозного суппорта
Загрязнение тормозного суппорта Очистить шахты тормозного суппорта
Ослабление распорных пружин Заменить распорные пружины
Заменить колесные подшипники
Коррозия края тормозного диска Обработать или заменить тормозные диски
Отделение накладки тормозной колодки Заменить тормозные колодки
Овальность тормозного барабана (для барабанных тормозов) Расточить или заменить тормозной барабан
Загрязнение тормозного барабана Очистить и проверить тормозной барабан
Снижение эффекта торможения несмотря на высокое усилие на педаль Замаслены накладки тормозных колодок Заменить накладки
Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Дефект усилителя тормозов Проверить усилитель
Износ накладок тормозных колодок Заменить тормозные колодки
Отказ одного из тормозных контуров Проверить герметичность тормозной системы
Пульсация тормозов Функционирование АБС Нормально, ничего не предпринимать
Повышенное биение или отклонение от нормальной толщины тормозного диска Проверить биение и толщину. Диск обточить или заменить.
Тормозной диск не параллелен тормозному суппорту Проверить плоскость установки тормозного суппорта
Велик люфт колесных подшипников Заменить колесные подшипники
Недостаточная эффективность стояночного тормоза Увеличен свободный ход тормозных колодок или тросов Отрегулировать стояночный тормоз автомобиля
Замаслены тормозные колодки Заменить тормозные колодки
Коррозия распорного замка или тросов Установить новые детали
Нарушение регулировки тросов стояночного тормоза Отрегулировать тросы стояночного тормоза автомобиля

Список источников

Тормозная система

Тормозная система предназначена для уменьшения скорости движения и/или остановки транспортного средства или механизма. Она также позволяет удерживать транспортное средство от самопроизвольного движения во время покоя.

Классификация

По своему назначению и выполняемым функциям тормоз­ные системы подразделяются на:

Рабочая тормозная система

Рабочая тормозная система служит для регулирования скорости движения транспортного средства и его остановки.

Рабочая тормозная система приводится в действие нажатием на педаль тормоза, которая располагается в ногах у водителя (исключение - автомобили для обучения принципам вождения, дополнительная группа педалей располагается в ногах у инструктора, а также нередко - модели, предназначенные для использования инвалидами, или переоборудованные для них). Усилие ноги водителя передаётся на тормозные механизмы всех четырёх колёс.

Тормозные системы также делятся по типам приводов : механический, гидравлический, пневматический и комбинированный. Так, на легковых машинах в наше время в основном используются гидравлический привод, а на грузовых пневматический и комбинированный. Для уменьшения прикладываемого усилия на педаль тормоза устанавливается вакуумный или пневматический усилитель тормозов.

Запасная тормозная система

Запас­ная тормозная система служит для остановки транспортного средства при выходе из строя рабочей тормозной системы.

Стояночная тормозная система

Стояночная тормозная система служит для удержания транспортного средства неподвижно на дороге. Используется не только на стоянке, она также применяется для предотвращения скатывания транспортного средства назад при старте на подъёме.

Стояночная тормозная система приводится в действие с помощью рычага стояночного тормоза. Водитель рукой может управлять тормозными механизмами задних либо передних колёс.

Вспомогательная тормозная система

Вспомогательная тормозная система служит для длительного поддержания постоянной скорости (на затяжных спусках) за счёт торможения двигателем, что достигается прекращением подачи топлива в цилиндры двигателя и перекрытием выпускных трубопроводов.

История развития тормозных систем автомобиля

Колодочный тормоз на карете.

Первые тормозные системы применялись ещё на гужевом транспорте . Лошадь разгоняла повозку до относительно больших скоростей и сама не справлялась с ее остановкой. Первые механизмы тормозили само колесо посредством ручного рычага или системы рычагов. Деревянная колодка, иногда - с обитой кожей поверхностью прижималась непосредственно к ободу колеса, затормаживая его. В сырую погоду это было малоэффективно, к тому же, с распространением резиновых шин тормозить колесо таким образом стало просто невозможно, так как резина от контакта с колодкой очень быстро бы стёрлась.

С тех пор тормозной механизм прошел серьёзную эволюцию. Наибольшее развитие в разработке тормозных систем произошло с появлением автомобиля.

Колодочный тормоз на велосипеде.

Первые автомобили использовали тот же самый колодочный тормоз, что и конные экипажи (строго говоря, все распространённые тормозные механизмы, кроме ленточных, являются колодочными, так как используют в своей работе так или иначе устроенные колодки) . Например, на первых автомобилях Бенца колёса тормозились именно колодками, обитыми кожей. Это было малоэффективно, к тому же кожа быстро истиралась, и на протяжении поездки порой приходилось несколько раз менять кожанные накладки. Усовершенствованный вариант этого механизма используется до сих пор на наиболее простых и малоскоростных велосипедах, правда колодки теперь делают из металла, накладки - из фрикционного материала, и располагают их по бокам от обода колеса (на более дорогих и скоростных моделях используют уже дисковые тормоза).


Принцип действия ленточного тормоза.


Барабанные тормоза старинного автомобиля с механическим приводом (барабаны сняты, открывая колодки и механизмы их привода).

Уже в начале XX века серийные легковые автомобили стали развивать скорость более 100 км/ч, что сделало жизненно необходимым наличие эффективной тормозной системы.

Как ни странно, первыми появились дисковые тормоза: запатентованы они были англичанином Уильямом Ланчестером в 1902, но на практике были использованы ещё в конце XIX века в форме, близкой к современным велосипедным. Главной их проблемой был ужасный скрип, издаваемый при контакте медных тормозных колодок с тормозным диском. По этой, а также иным причинам, на заре автомобилестроения наибольшее распространение получили не дисковые, а барабанные тормозные механизмы . Изначально существовало два их варианта.

Первый из них - применённый ещё Даймлером ленточный тормоз: гибкая металлическая лента охватывала снаружи тормозной барабан и, будучи натянутой через систему рычагов, останавливала его вращение. Этот механизм применялся даже в двадцатых-тридцатых годах, например на Ford A / ГАЗ-А в приводе стояночного (не рабочего) тормоза. Второй - барабанный тормоз с колодками полукруглой формы, расположенными внутри полого барабана и прижимающимися к его внутренней поверхности, - он был запатентован Луи Рено в 1902 году. Сегодня под барабанным тормозом имеют в виду обычно именно такой механизм.

В том же 1902 году Рэнсом Олдс применил на гоночном «Олдсмобиле» ленточные тормоза собственной конструкции на задних колёсах с приводом от педали в полу. Эта конструкция оказалась для того времени удачной, и уже через пару лет её переняло большинство американских автомобилестроителей. В качестве рекламы, Олдс позднее провёл сравнение эффективности тормозов своей системы с традиционными колодочными на конном экипаже и барбанными на «безлошадном экипаже» другого производителя. Тормозной путь со скорости в 14 миль в час (22,5 км/ч) составил 6,5 м у «Олдсмобила», 11 м у безлошадного экипажа и 23,6 м - у конного, что весьма убедительно говорило в пользу ленточных тормозов Олдса.

Тем не менее, в эксплуатации ленточне тормоза оказались менее удобны. При остановке на холме, автомобиль с ними мог скатываться вниз из-за самораспускания тормозной ленты - на особо крутых подъёмах пассажиру приходилось вылезать из автомобиля и подставлять под его колёса деревянные клинья. Расположенные открыто тормозные ленты очень быстро изнашивались и сильно страдали от коррозии, требуя частой замены - каждые несколько сотен километров. В сырую погоду тормозные ленты могли проскальзывать, как и в случае попадания под них грязи.

Поэтому уже в 1910-х годах большинство автомобилей стало использовать барабанные тормоза, колодки которых были надёжно укрыты внутри барабанов, не проскальзывали и могли служить уже тогда до 1-2 тысяч километров пробега. Это были первые по-настоящему эффективные тормозные механизмы, принцип действия которых мало изменился до наших дней. Сначала колодки были чугунными, но потом на них стали делать накладки из более износостойкого материала на основе асбеста (в печати тех лет называемого «Ферадо»).

Барабанные тормозные механизмы в практически неизменном виде просуществовали вплоть до сороковых-пятидесятых годов в качестве основного и практически единственного типа тормозных механизмов на автотранспорте.


Барабанный тормозной механизм с гидроприводом и одним двусторонним гидроцилиндром.

Однако, за это время существенно изменились системы привода тормозов.

Начиная с середины двадцатых годов тормозами стали в обязательном порядке снабжать все колёса - и передние, и задние. Пионеры автомобилестроения считали, что автомобиль с передними тормозами при замедлении станет неустойчивым, и ставили их только на задней оси. Впоследствии выяснилось, что автомобиль с передними тормозными механизмами при условии их правильной регулировки вполне управляем при торможении, более, того - расположенные спереди тормоза ощутимо более эффективны. Причём поначалу передние и задние тормоза приводились по-разному - на один мост работала ножная педаль, а на второй - рычаг, приводимый в действие рукой. В 1919 году на «Испано-Сюизе» появился механический привод тормозов обоих мостов от одной педали. Это способствовало распространению новинки: если на Нью-Йоркском автосалоне 1924 года тормоза на всех колёсах имелись только у автомобилей Duesenberg и Rickenbacker, то уже несколько лет спустя они стали стандартом даже на недорогих «Фордах» и «Плимутах».

Последние, выпущенные впервые в 1928 году, имели и ещё одно важнейшее нововведение: в то время, как тормозные системы большинства более ранних автомобилей полагались на механический привод - сначала тягами, а позднее проложенными между закреплёнными на раме шкивами тросами (вроде тех, которые в наши дни приводят в действие стояночный тормоз), - то на протяжении двадцатых-тридцатых годов общепринятыми становятся гидравлические тормозные системы, первая из которых была запатентована в США Малкольмом Локхидом (основателем фирмы Lockheed - производителя компонентов тормозных систем и крупного американского авиастроителя). В системе с гидроприводом тормозные механизмы приводились в действие через длинные системы трубок, заполненных гидравлической жидкостью - изначально изготовлявшейся на основе растительного масла. Впервые она была применена в 1921 года на ультрасовременном для своих лет Duesenberg Model A. Уолтер П. Крайслер в значительной степени усовершенствовал систему гидроприводов Локхида, в частности - заменил постоянно текущие кожанные уплотнительные манжеты гидроцилиндов на резиновые, и, заручившись разрешением самого Локхида, в 1924 году начал ставить их на свои машины (система Локхид-Крайслер). Эта система без радикальных изменений просуществовала на автомобилях корпорации «Крайслер» до начала 60-х годов.

Автомобили General Motors окончательно перешли на использование гидравлических тормозов лишь к середине 30-х годов, до этого предпочитая тормоза системы Винсента Бендикса (основателя фирмы Bendix) со считавшимся более надёжным механическим приводом, а Ford решился на такой переход лишь в 1938 году.

Примерно в те же годы появляются и первые системы сервоприводов , снижавших усилие на педали тормоза. Первым серийным автомобилем с вакуумным усилителем тормозов был Pierce-Arrow 1928 года. К началу 30-х, их использовали такие производители люксовых автомобилей, как Lincoln, Cadillac, Duesenberg, Stutz и Mercedes-Benz. Массовое их распространение, тем не менее, пришлось лишь на 60-е годы.


Спортивный автомобиль сороковых годов с задними тормозами, расположенными у главной передачи.

В сороковых-пятидесятых годах ввиду существенного роста мощности двигателей появилась необходимость значительного повышения эффективности тормозов серийных автомобилей.

Помимо внедрения в тормозные системы всевозможных усилителей (как правило - либо гидровакуумных, в которых разрежение во впускном коллекторе при помощи специального механизма воздействовало на тормозную жидкость, повышая эффективность торможения, либо вакуумных, где разрежение во впускном трубопроводе двигателя непосредственно воздействовало на связанный с педалью шток; также существовали гидроусилители тормозов, использовавшие не разрежение, а давление, создаваемое насосом усилителя рулевого управления), стали совершенствоваться и сами тормозные механизмы.


Барабанный тормозной механизм с двумя ведущими колодками (дуплексный).

Первым существенным улучшением в конструкции барабанного тормоза стало появление в 40-х годах механизма с двумя раздельными гидроцилиндрами и двумя ведущими колодками (дуплексного). До этого гидроцилиндр был один и раздвигал он сразу обе колодки, что было существенно менее эффективно.

Скорости движения автомобилей росли. Самые мощные серийные автомобили пятидесятых годов имели максимальную скорость, приближающуюся к 200 км/ч. При длительном торможении с большой скорости тормозные механизмы перегревались и теряли эффективность. Ответным шагом конструкторов стало появление алюминиевых тормозных барабанов (с запрессованными в них чугунными кольцами, к которым непосредственно прижимались колодки), обеспечивавших лучший отвод тепла, а также введения служившего той же цели оребрения на их поверхности (вентилируемые барабанные тормоза).

Со временем тормозные колодки изнашиваются и начинают слабее прижиматься к поверхности барабана, чем существенно снижается эффективность торможения. Для предотвращения этого эффекта в барабанных тормозах были предусмотрены механизмы (эксцентрики), позволяющие в процессе регулировки немного сместить тормозные колодки наружу, восстановив их контакт с поверхностью барабана при торможении («подвести» тормоза). Однако такие механизмы требовали постоянной регулировки, причём добиться равномерного торможения всеми четырьмя колёсами при этом было сложно. Решением проблемы стало внедрение гидроцилиндров с особой конструкцией, обеспечивавшей «самоподвод» тормозных механизмов. Впервые они появились на «Студебекере» в 1946 году. Это не только избавило владельца от весьма частой регулировки тормозов автомобиля, но и существенно повысило безопасность, так как при исправном механизме исключалась возможность неправильной регулировки или пренебрежения ей.

Тем не менее, ещё долгое время многие автомобили не имели такой системы. Например, советский вариант Fiat 124 - ВАЗ-2101 не имел «самоподвода» задних барабанных тормозных механизмов, как и многие бюджетные европейские автомобили тех лет (а вот «Москвич-408 / 412» и «Волга» ГАЗ-24 - уже имели). В США они имелись в списке опционального оборудования, например, на «Меркури» 1957 года, а широкое распространение получили лишь в середине 60-х.

Однако, все эти меры оказались недостаточными - на рубеже пятидесятых и шестидесятых годов наметилось явное несоответствие динамических и тормозных возможностей автомобилей. Тормозные системы попросту не успевали за стремительным ростом мощности моторов, что особенно явно было заметно в США, где во всю разгоралась «гонка лошадиных сил» - каждый производитель старался представить на рынке более мощную машину, чем у конкурентов, что привело к тому, что редкий американский автомобиль имел в те годы менее шести цилиндров и 100 л.с. Тормозные механизмы же оставались по сути теми же, что и в тридцатых годах.

Дисковый тормозной механизм.

Поэтому в конце пятидесятых - начале шестидесятых на быстроходных серийных автомобилях стали появляться тормозные механизмы принципиально иного типа - дисковые. Ранее они находили применение в основном на гоночных конструкциях и авиации. В таком механизме колодки прижимались не к внутренней поверхности барабана, а к наружным плоскостям чугунного диска.

Такой механизм конструктивно проще барабанного с автоматической регулировкой зазора, компактнее, легче и дешевле.

Он эффективнее, несмотря на меньшую площадь колодок, благодаря тому, что поверхность диска плоская и колодки прижимаются к нему равномерно (полукруглая поверхность колодки барабанного тормоза же неравномерно прижимается к внутренней поверхности барабана). Он проще в обслуживании (в частности - проще замена колодок), практически не ограничивает тормозное усилие на колодках (в барабанном механизме оно ограничено прочностью барабана).

Дисковые тормоза лучше охлаждаются, потому что воздух может свободно циркулировать между диском и поверхностью колодки. Существуют также вентилируемые диски, у них фрикционных поверхностей две. Они разделены перемычками, которые позволяют воздуху попадать внутрь диска и ещё лучше отводить тепло от тормозов. Большинство передних дисковых тормозов на современных машинах - именно вентилируемые, потому что как раз на них приходится большая часть работы при остановке автомобиля. При этом большинство задних тормозов - не вентилируемые. Они имеют сплошной диск, потому что задние тормоза просто-напросто не вырабатывают большого количества тепла.

Другим плюсом дисковых тормозов является то, что они самоочищаются от воды, грязи и продуктов износа - загрязнения и газы «сбрасываются» с диска при его вращении, в отличие от барабана, который легко собирает на себя, например, пыль - продукт износа колодок. Вода, масло, газообразные продукты трения - всё это быстро отводится от рабочих поверхностей, не ухудшая торможение.

Вакуумный сервопривод педали тормоза получил массовое распространение именно после внедрения дисковых тормозов, так как они в силу своей конструкции требуют большего усилия на педали.

Характерны для них и определённые недостатки. Площадь их колодок получается сравнительно небольшой, что вызывает необходимость повышения давления в тормозной системе. Это означает рост усилия на педали тормоза и увеличение износа колодок, что вызывает их частую замену.

В барабанном тормозном механизме с двумя рабочими цилиндрами эффективность работы повышается за счёт вращения барабана при движении автомобиля, которое при торможении стремится ещё сильнее прижать к нему колодки («увлекая» их за собой и дополнительно проворачивая их вокруг своих осей), в итоге также уменьшая необходимое усилие на педали тормоза (водителю достаточно легкого нажатия на педаль чтобы колодки коснулись барабана, после чего этот эффект начинает работать как своеобразный «усилитель») - на дисковых тормозных механизмах такой эффект совершенно отсутствует, так как диск вращается в направлении, перпендикулярном к направлению действия тормозного усилия. Поэтому автомобили с дисковыми тормозами, особенно на всех колёсах, в абсолютном большинстве случаев снабжаются сервоприводом (усилителем) тормозов - без него усилие на педали было бы чрезмерно велико.

Кроме того, с дисковым тормозным механизмом сложнее организуется привод стояночного (ручного) тормоза, ввиду чего долгое время на задней оси многих автомобилей продолжали использовать барабанные тормоза (иногда даже использовались механизмы с рабочими дисковыми и отдельным барабанным парковочным тормозом меньшего размера).

Утверждение, что задние дисковые тормозные колодки сильно изнашиваются на плохих дорогах - весьма спорное. В 1990-е годы в России появилось большое количество импортных легковых автомобилей с задними дисковыми тормозами, дороги с 1970-х годов лучше не стали, однако повышенного износа задних «дисковых» колодок не наблюдается, в том числе при эксплуатации на проселочных дорогах. Сильнее изнашиваются передние «дисковые» колодки, что естественно, при торможении перед автомобиля более нагружен. Вероятно, отказ от задних дисковых тормозов на «Жигулях» имел экономическую основу. Дело в том, что задние «барабанные» тормозные колодки и рабочие, и стояночные. В дисковом тормозном механизме сзади на каждом колесе стоят две пары колодок: рабочие, с гидравлическим приводом, и стояночные, с тросовым приводом. В этом случае советская промышленность должна была выпускать на треть больше тормозных колодок для «Жигулей». Фактор ремонтопригодности: на «барабанные» колодки можно наклепать накладки (что и делали), на «дисковых» это делать нежелательно, с малым количеством заклепок накладку может сорвать, большое количество заклепок значительно уменьшает рабочую площадь накладки. Кроме того, приклеенная накладка теоретически может изнашиваться до металла, наклепанная - только до головки заклепки, затем она начнет портить металл тормозного диска (тормозного барабана).

Основной же причиной столь позднего массового внедрения дисковых тормозов было то, что при значительно более высокой эффективности дисковые тормоза также выделяют значительно больше тепла, чем барабанные. При использовании ранних образцов тормозных жидкостей на основе спиртов и растительного масла (касторового), при длительном торможении это приводило к закипанию тормозной жидкости в гидроприводе, образованию паровых пробок и «проваливанию» педали тормоза с потерей эффективности торможения, что было крайне опасно. Только с появлением более высококипящих тормозных жидкостей, например на гликолевой основе, стало возможным массовое применение дисковых тормозных механизмов. Применение старых марок тормозных жидкостей на масляной основе в таких тормозных системах было существенно ограничено или полностью исключено.

Именно по этой причине барабанные тормоза считаются более пригодными для тяжёлых условий эксплуатации по бездорожью или запылённым просёлочным дорогам. Например, на ВАЗ-2101 конструкторы поставили задние барабанные тормоза, хотя на итальянском прототипе Fiat 124 они были дисковыми: лучшая тормозная динамика версии с дисковыми тормозами просто не была бы востребована в СССР, где остальные автомобили, даже новейшей разработки, в те годы имели ещё худшую тормозную динамику и, как правило, барабанные тормоза без усилителя, а в эксплуатации вообще всё ещё находились в больших количествах автомобили с механическим приводом тормозов (скажем, производство ЗиС-5 окончилось лишь в 1958 году, и эта модель все ещё принадлежала к распространённым); а вот к тяжёлым дорожным условиям страны барабанные тормоза были более приспособлены, да и замена колодок на них требовалась существенно реже, что также было большим плюсом в тогдашних условиях. По тем же причинам долго ставили на автомобили барабанные тормоза и, например, в Австралии, также не отличавшейся идеальными дорогами, а также на внедорожниках.

Передние тормозные диски находятся в относительно благоприятных условиях, а вот задние принимают на себя всю грязь, которую отбрасывают назад передние колеса. Вот почему задние тормозные колодки и диски часто изнашиваются быстрее передних (на том же Fiat 124 в отечественных дорожных условиях задние тормозные колодки снашивались до металла за 500-600 км пробега), хотя на них приходится намного меньшая доля работы во время торможения.

В случае использования задних дисковых тормозных механизмов использование стояночного тормоза при отрицательной температуре воздуха необходимо исключить, так как часты случаи примерзания колодок к диску. Барабанный механизм лучше герметизирован и как правило меньше подвержен этому.

Изначально дисковые тормоза устанавливали, как правило, и на переднюю, и на заднюю ось. В частности, именно так поступала фирма Fiat - один из пионеров внедрения «дисков». По мере того, как дисковые тормозные механизмы входили в широкий обиход и становились доступны хотя бы как дополнительное оборудование на сравнительно недорогих автомобилях, стали появляться и тормозные системы с передними (как более важными и эффективными) дисковыми и задними барабанными тормозами, несмотря на очевидную несбалансированность.

Существовали различные конструкции дисковых тормозных механизмов - двух- и четырёхпоршневые, с неподвижной и плавающей скобой, вентилируемые, и так далее.

Впоследствии и до настоящего времени конструкция дисковых тормозов принципиально не менялась.

Тормозные диски с перфорацией (просверленными в дисках отверстиями) - отчасти просто украшение, однако не совсем бесцельное: отверстия позволяют воде и газам, находящимся между поверхностью колодок и поверхностью диска, «забиваться» в них, и тормоза таким образом срабатывают быстрее, не ожидая лишнего поворота диска, очищающего его. Это может быть важным в ситуациях, встречающихся в автоспорте, однако при повседневной городской езде, как правило, некритично. К тому же отверстия уменьшают площадь трущейся поверхности диска, а ещё в них могут забиться мелкие камешки, что потребует лишней работы по их удалению.

Дисковые тормоза на всех колёсах стали стандартным оборудованием большинства легковых автомобилей на Западе уже к концу восьмидесятых годов.

На тяжёлых автомобилях - в первую очередь грузовиках и автобусах, а также на очень больших легковых производства США - долгое время использовались барабанные тормозные механизмы, особенно в задних тормозах, так как у них проще увеличить мощность тормозного механизма за счёт наращивания площади колодок - для этого наряду с диаметром просто увеличивают ширину барабана. С тормозными дисками же, увеличить мощность тормозного механизма возможно лишь за счёт роста их диаметра, который ограничен размерами ободов колёс. Поэтому получается, что барабанный тормозной механизм можно сделать намного мощнее в абсолютном выражении за счёт большой площади колодок, несмотря на его меньшую относительную эффективность по сравнению с дисковым.

Однако в последние десятилетия как раз в связи с необходимостью повышения эффективности тормозов наметилась тенденция к существенному увеличению диаметра колёсных ободов с целью размещения тормозных дисков большего размера, при одновременном сильно снижении высоты профиля шины. На современных легковых автмообилях не является редкостью применение ободов посадочным диаметром 16-17 дюймов, в некоторых случаях - до 22", и сверхнизкопрофильных шин с высотой профиля всего в несколько сантиметров. Это позволяет разместить тормозные диски вполне достаточной эффективности. Решёнными в настоящее время можно считать и проблемы с организацией привода стояночного тормоза при дисковых механизмах тормозов. Всё это открыло возможности для широчайшего использования дисковых тормозных механизмов всех колёс, которые в настоящее время являются в развитых странах стандартным оборудованием для абсолютного большинства легковых автомобилей за исключением наиболее бюджетных моделей. Появляются и дисковые тормозные системы для быстроходных грузовиков.

Вторым важным усовершенствованием, сделанным в шестидесятые годы, стало массовое распространение двухконтурных тормозных систем, в которых так или иначе предусматривалось разделение гидропривода на два независимых контура. При выходе из строя или снижении эффективности действия одного из них, второй обеспечивал достаточную эффективность торможения для того, чтобы добраться до ближайшего места ремонта. Начиная с конца шестидесятых - начала семидесятых годов такие системы были в большинстве развитых стран включены в обязательные технические требования ко всем новым автомобилям. Например, в США двухконтурная систма стала обязательной с 1967 года, хотя ещё с начала десятилетия многие фирмы внедряли двухконтурные тормоза, например, «Кадиллак» - в 1962, American Motors - в 1963, Studebaker - в 1964.


ABS стала актуальной в связи с массовым распространением вакуумных усилителей в тормозных системах и эффективных, быстродействующих дисковых тормозных механизмов, которые в сочетании легко позволяют при нажатии на педаль заблокировать колёсные тормозные механизмы. Колёса при этом прекращают вращаться и, как показали исследования, эффективность торможения автомобиля при этом (движение «юзом», то есть, скольжение неподвижных колёс по асфальту) существенно уменьшается по сравнению со случаем, когда колёса медленно, но всё же катятся. Кроме того, очень важно то, что при этом машина становится неуправляемой, поскольку направление движения практически не зависит от поворота передних колес, если они не катятся, а скользят.

ABS делает практически невозможной блокировку за счёт управляемого электронным блоком снижения давления в контурах колёс, подверженных в данный момент блокировке, таким образом поддерживая их «на грани» блокирования - торможение в этот момент считается наиболее эффективным. Тем не менее, ABS в определённых условиях (например на грязи, песке, гравии или глубоком слое снега) всё же может способствовать некоторому увеличению тормозного пути по сравнению со специально подготовленным водителем, использующем на автомобиле без ABS специальные приёмы торможения. Более важно, однако, то, что автомобиль с ABS не теряет управляемости во время торможения, его не заносит в одну сторону при блокировке одного из передних колёс. Также в системе тормозов с ABS отсутствуют сравнительно ненадёжные механические регуляторы давления, использующиеся в традиционной системе в контуре задних колёс.

В настоящее время происходит непрерывное дальнейшее совершенствование тормозных систем автомобилей (можно назвать такие сравнительно недавние новшества, как ESP , TCS , EBD , и так далее), результатом которого становится дальнейший рост активной безопасности. Однако наиболее важным фактором безопасности, как и во все времена, остаётся всё же поведение водителя.

В связи с тем, что в последнее время набирают популярность электромобили и автомобили с гибридными силовыми установками , всё чаще используются рекуперативное торможение , где энергия, вырабатываемая при торможении, преобразуется в электрическую, подзаряжает аккумуляторы . Например, в Toyota Prius тормозные колодки используются для удерживания автомобиля на месте и для экстренного торможения, а основную роль в торможении играют мотор-генераторы, поэтому тормозные колодки у гибридных автомобилей служат в несколько раз дольше, чем у обычных.

Тормозная система с пневматическим приводом

Общее устройство:

  • Компрессор с регулятором давления.
  • Трубки и шланги .
  • Тормозной кран.
  • Воздушные баллоны (ресиверы).
  • Разобщительный кран прицепа.
  • Разобщительная головка прицепа.
  • Пневмокамеры.
  • Тормозные механизмы.

Устройство тормозного механизма:

  • Тормозной барабан.
  • Тормозные колодки.
  • Разжимной кулак.
  • Стяжные пружины.
  • Опорные пальцы колодок.
  • Механизм развода колодок.

Принцип действия: При работающем двигателе и отпущенной педали компрессор накачивает воздух в баллоны, где он хранится под давлением. Из баллонов воздух поступает к тормозному крану, от тормозного крана воздух поступает через верхнюю секцию в баллоны прицепа. При нажатии на педаль тормоза верхняя секция закрывается, и воздух прекращает поступать к прицепу. Тормозной кран прицепа открывается, и воздух из баллонов прицепа поступает в пневмокамеры прицепа, и прицеп начинает затормаживать. Нижняя секция тормозного крана автомобиля открывается, и воздух поступает из баллонов автомобиля к пневмокамерам автомобиля, и автомобиль начинает затормаживать. Воздух, поступая в пневмокамеры, давит на диафрагму, она, сжимая пружину, смещается и давит на толкатель, а он передаёт усилие на рычаг и валик разжимного кулака. Разжимной кулак поворачивается и разводит колодки. Колодки прижимаются к барабану, и за счёт трения затормаживают его. При отпускании педали тормоза всё возвращается в исходное положение за счёт возвратных пружин, а воздух из пневмокамер выходит в атмосферу через кран.

Многоконтурные тормозные системы

Общее устройство:

  • Компрессор
  • Влагомаслоотделитель
  • Регулятор давления.
  • Общий баллон.
  • Разобщительный клапан.
  • Баллон переднего контура.
  • Баллон заднего контура.
  • Двухсекционный тормозной кран.
  • Тормозной кран прицепа.
  • Разобщительный кран и разобщительная головка прицепа.
  • Пневмокамеры.
  • Манометры.
  • Предохранительные клапаны.

Принцип действия аналогичен одноконтурным тормозным системам. Разница лишь в том, что для каждой пары колес воздух поступает из отдельного баллона.

Тормозные механизмы гусеничной техники (на примере трактора Т - 130)

Предназначены для снижения скорости движения, удержания машины на уклоне и для остановки одного из бортов для более резкого поворота машины.

Устройство:

  • Ведомый барабан (тормозной).
  • Тормозная лента с фрикционной накладкой.
  • Двухопорный рычаг.
  • Кронштейн рычага.
  • Рычаги и тяги привода тормозного механизма.
  • Возвратная пружина.

Принцип действия:

При нажатии на педаль тормоза усилие передаётся двухопорному рычагу. Он поворачивается, одной точкой опирается на кронштейн и держит один конец ленты, а другой точкой натягивает ленту. Барабан обжимается лентой и затормаживает.

См. также

  • Тормозной механизм
  • Дисковые тормоза
  • Барабанные тормоза
  • Пневмоклапан

Ссылки Словарь-справочник терминов нормативно-технической документации

Тормозная система - совокупность устройств, предназначенных для торможения транспортного средства. Исследуется автотехнической экспертизой при расследовании дорожно транспортных происшествий … Криминалистическая энциклопедия

тормозная система длительного действия - Дополнительная тормозная система, способная осуществлять и поддерживать в течение длительного времени торможение без существенного уменьшения его эффективности. Примечания 1. Термин «тормозная система длительного действия» охватывает… … Справочник технического переводчика

Тормозная система автотранспортного средства - тормозная система совокупность частей транспортного средства, предназначенных для его торможения при воздействии на орган управления тормозной системы;...

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама